On the first Betti number of spacetimes with parallel lightlike vector field

2020 ◽  
Vol 72 ◽  
pp. 101648
Author(s):  
Raymond Hounnonkpe
2021 ◽  
Vol 8 (1) ◽  
pp. 336-353
Author(s):  
Charles P. Boyer ◽  
Hongnian Huang ◽  
Christina W. Tønnesen-Friedman

Abstract We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b 1(M) and the basic Hodge number h 0,2 B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n 1) × U(n 2)) as well as the fiber join operation preserve S-stability.


2020 ◽  
Vol 64 (3) ◽  
pp. 759-775
Author(s):  
Herbert Edelsbrunner ◽  
Katharina Ölsböck

Abstract Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.


2016 ◽  
Vol 33 (5) ◽  
pp. 055003 ◽  
Author(s):  
José A S Pelegrín ◽  
Alfonso Romero ◽  
Rafael M Rubio

Author(s):  
I. I. Kravchenko

The paper considers the mathematical model development technique to build a vector field of the shape deviations when machining flat surfaces of shell parts on multi-operational machines under conditions of anisotropic rigidity in technological system (TS). The technological system has an anisotropic rigidity, as its elastic strains do not obey the accepted concepts, i.e. the rigidity towards the coordinate axes of the machine is the same, and they occur only towards the external force. The record shows that the diagrams of elastic strains of machine units are substantially different from the circumference. The issues to ensure the specified accuracy require that there should be mathematical models describing kinematic models and physical processes of mechanical machining under conditions of the specific TS. There are such models for external and internal surfaces of rotation [2,3], which are successfully implemented in practice. Flat surfaces (FS) of shell parts (SP) are both assembly and processing datum surfaces. Therefore, on them special stipulations are made regarding deviations of shape and mutual arrangement. The axes of the main bearing holes are coordinated with respect to them. The joints that ensure leak tightness and distributed load on the product part are closed on these surfaces. The paper deals with the analytical construction of the vector field F, which describes with appropriate approximation the real surface obtained as a result of modeling the process of machining flat surfaces (MFS) through face milling under conditions of anisotropic properties.


2019 ◽  
Vol 2019 (2) ◽  
pp. 62-67
Author(s):  
R.A. Ilyasova

2017 ◽  
Vol 5 (2) ◽  
pp. 73-78
Author(s):  
Jay Prakash Singh ◽  

In this paper author present an investigation of some differential geometric properties of Para-Sasakian manifolds. Condition for a vector field to be Killing vector field in Para-Sasakian manifold is obtained. Mathematics Subject Classification (2010). 53B20, 53C15.


2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


2021 ◽  
pp. 1-30
Author(s):  
A. Guo ◽  
Z. Zhou ◽  
R. Wang ◽  
X. Zhao ◽  
X. Zhu

Abstract The full-wing solar-powered UAV has a large aspect ratio, special configuration, and excellent aerodynamic performance. This UAV converts solar energy into electrical energy for level flight and storage to improve endurance performance. The UAV only uses a differential throttle for lateral control, and the insufficient control capability during crosswind landing results in a large lateral distance bias and leads to multiple landing failures. This paper analyzes 11 landing failures and finds that a large lateral distance bias at the beginning of the approach and the coupling of base and differential throttle control is the main reason for multiple landing failures. To improve the landing performance, a heading angle-based vector field (VF) method is applied to the straight-line and orbit paths following and two novel 3D Dubins landing paths are proposed to reduce the initial lateral control bias. The results show that the straight-line path simulation exhibits similar phenomenon with the practical failure; the single helical path has the highest lateral control accuracy; the left-arc to left-arc (L-L) path avoids the saturation of the differential throttle; and both paths effectively improve the probability of successful landing.


Sign in / Sign up

Export Citation Format

Share Document