Investigating the performance of wearable motion sensors on recognizing falls and daily activities via machine learning

2021 ◽  
pp. 103365
Author(s):  
Erhan Kavuncuoğlu ◽  
Esma Uzunhisarcıklı ◽  
Billur Barshan ◽  
Ahmet Turan Özdemir
Proceedings ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 24
Author(s):  
Eduard Alexandru Stoica ◽  
Daria Maria Sitea

Nowadays society is profoundly changed by technology, velocity and productivity. While individuals are not yet prepared for holographic connection with banks or financial institutions, other innovative technologies have been adopted. Lately, a new world has been launched, personalized and adapted to reality. It has emerged and started to govern almost all daily activities due to the five key elements that are foundations of the technology: machine to machine (M2M), internet of things (IoT), big data, machine learning and artificial intelligence (AI). Competitive innovations are now on the market, helping with the connection between investors and borrowers—notably crowdfunding and peer-to-peer lending. Blockchain technology is now enjoying great popularity. Thus, a great part of the focus of this research paper is on Elrond. The outcomes highlight the relevance of technology in digital finance.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1957
Author(s):  
Amandine Dubois ◽  
Titus Bihl ◽  
Jean-Pierre Bresciani

Because of population ageing, fall prevention represents a human, economic, and social issue. Currently, fall-risk is assessed infrequently, and usually only after the first fall occurrence. Home monitoring could improve fall prevention. Our aim was to monitor daily activities at home in order to identify the behavioral parameters that best discriminate high fall risk from low fall risk individuals. Microsoft Kinect sensors were placed in the room of 30 patients temporarily residing in a rehabilitation center. The sensors captured the patients’ movements while they were going about their daily activities. Different behavioral parameters, such as speed to sit down, gait speed or total sitting time were extracted and analyzed combining statistical and machine learning algorithms. Our algorithms classified the patients according to their estimated fall risk. The automatic fall risk assessment performed by the algorithms was then benchmarked against fall risk assessments performed by clinicians using the Tinetti test and the Timed Up and Go test. Step length, sit-stand transition and total sitting time were the most discriminant parameters to classify patients according to their fall risk. Coupling step length to the speed required to stand up or the total sitting time gave rise to an error-less classification of the patients, i.e., to the same classification as that of the clinicians. A monitoring system extracting step length and sit-stand transitions at home could complement the clinicians’ assessment toolkit and improve fall prevention.


2019 ◽  
Author(s):  
Clara Fannjiang ◽  
T. Aran Mooney ◽  
Seth Cones ◽  
David Mann ◽  
K. Alex Shorter ◽  
...  

AbstractZooplankton occupy critical roles in marine ecosystems, yet their fine-scale behavior remains poorly understood due to the difficulty of studying individualsin situ. Here we combine biologging with supervised machine learning (ML) to demonstrate a pipeline for studyingin situbehavior of larger zooplankton such as jellyfish. We deployed the ITAG, a biologging package with high-resolution motion sensors designed for soft-bodied invertebrates, on 8Chrysaora fuscescensin Monterey Bay, using the tether method for retrieval. Using simultaneous video footage of the tagged jellyfish, we develop ML methods to 1) identify periods of tag data corrupted by the tether method, which may have compromised prior research findings, and 2) classify jellyfish behaviors. Our tools yield characterizations of fine-scale jellyfish activity and orientation over long durations, and provide evidence that developing behavioral classifiers onin siturather than laboratory data is essential.Summary StatementHigh-resolution motion sensors paired with supervised machine learning can be used to infer fine-scalein situbehavior of zooplankton for long durations.


2008 ◽  
Vol 28 (1) ◽  
pp. 120-126 ◽  
Author(s):  
A. Findlow ◽  
J.Y. Goulermas ◽  
C. Nester ◽  
D. Howard ◽  
L.P.J. Kenney

2017 ◽  
Vol 5 (42) ◽  
pp. 11092-11099 ◽  
Author(s):  
Qi Li ◽  
Jin Li ◽  
Danhquang Tran ◽  
Chengqiang Luo ◽  
Yang Gao ◽  
...  

Strain sensors based on a porous CNT/PDMS nanocomposite can detect a collection of human body motions and actuation of soft robotics.


Author(s):  
G. S. Karthick ◽  
P. B. Pankajavalli

The rapid innovations in technologies endorsed the emergence of sensory equipment's connection to the Internet for acquiring data from the environment. The increased number of devices generates the enormous amount of sensor data from diversified applications of Internet of things (IoT). The generation of data may be a fast or real-time data stream which depends on the nature of applications. Applying analytics and intelligent processing over the data streams discovers the useful information and predicts the insights. Decision-making is a prominent process which makes the IoT paradigm qualified. This chapter provides an overview of architecting IoT-based healthcare systems with different machine learning algorithms. This chapter elaborates the smart data characteristics and design considerations for efficient adoption of machine learning algorithms into IoT applications. In addition, various existing and hybrid classification algorithms are applied to sensory data for identifying falls from other daily activities.


ASAIO Journal ◽  
2018 ◽  
Vol 64 (3) ◽  
pp. 351-359 ◽  
Author(s):  
Jacob A. Garlant ◽  
Kaitlyn R. Ammann ◽  
Marvin J. Slepian

Sign in / Sign up

Export Citation Format

Share Document