Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: A proof of concept

Author(s):  
Robinson M. Mugo ◽  
Sei-Ichi Saitoh ◽  
Fumihiro Takahashi ◽  
Akira Nihira ◽  
Tadaaki Kuroyama
2012 ◽  
Vol 92 (6) ◽  
pp. 1399-1407 ◽  
Author(s):  
Dong Zhang ◽  
Zhao-Li Xu

Determining optimal temperature and salinity for marine organisms is a challenge for marine ecologists because not every species can be easily maintained in the laboratory for testing the influence of environmental parameters. To find a simple method to estimate the optimal temperature and salinity for marine organisms based on survey data, a reciprocal quadratic yield-density model was used for determining the optimal temperature or salinity from abundance data for six pelagic Chaetognatha species. The data for the modelling were collected in four surveys in the East China Sea (23°30′–33°N 118°30′–128°E) from 1997 to 2000. According to both survey data and results from the models, we analysed qualitatively and quantitatively the ecological characteristics of those species. Estimated optimal temperatures and salinities are 17.3°C and 14.1‰ for Sagitta nagae, 20.3°C and 13.8‰ for S. bedoti, 24.9°C and 32.9‰ for S. enflata, 22.5°C and 16.5‰ for S. ferox, 24.5°C and 34.1‰ for S. pacifica and 17.3°C and 14.1‰ for S. pulchra, respectively. Three ecological groups were evident in the East China Sea: the neritic, warm temperate water species (S. nagae); the neritic, warm water species (S. pulchra, S. ferox and S. bedoti); and the oceanic, warm water species (S. enflata and S. pacifica). Our results validate that the model is applicable for describing the relationship between chaetognaths abundance and temperature or salinity.


2019 ◽  
Vol 7 (2) ◽  
pp. 28 ◽  
Author(s):  
Si Gao ◽  
Shengbin Jia ◽  
Yanyu Wan ◽  
Tim Li ◽  
Shunan Zhai ◽  
...  

The possible role of air–sea latent heat flux (LHF) in tropical cyclone (TC) genesis over the western North Pacific (WNP) is investigated using state-of-the-art satellite and analysis datasets. The authors conducted composite analyses of several meteorological variables after identifying developing and non-developing tropical disturbances from June to October of the period 2000 to 2009. Compared to the non-developing disturbances, increased LHF underlying the developing disturbances enhances boundary–layer specific humidity. The secondary circulation then transports more boundary–layer moisture inward and upward and, thus, induces a stronger moist core in the middle troposphere. Accordingly, the air in the core region ascends following a warmer moist adiabat than that in the environment and results in a stronger upper-level warm core, which is associated with a stronger near-surface tangential wind based on the thermal wind balance. This enlarges the magnitude and negative radial gradient of LHF and, thereby, further increases boundary–layer specific humidity. A tropical depression forms when the near-surface tangential wind increases to a certain extent as a result of the continuing positive feedback between near-surface wind and LHF. The results suggest an important role of wind-driven LHF in TC genesis over the WNP.


2015 ◽  
Vol 36 (4) ◽  
pp. 897-909 ◽  
Author(s):  
Valeriano Parravicini ◽  
Luisa Mangialajo ◽  
Laure Mousseau ◽  
Andrea Peirano ◽  
Carla Morri ◽  
...  

2018 ◽  
Vol 45 (1) ◽  
pp. 354-362 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Hiroyuki Murakami ◽  
Gabriele Villarini ◽  
Thomas L. Delworth ◽  
...  

2015 ◽  
Vol 28 (4) ◽  
pp. 1465-1476 ◽  
Author(s):  
Hiroshi G. Takahashi ◽  
Hatsuki Fujinami ◽  
Tetsuzo Yasunari ◽  
Jun Matsumoto ◽  
Somchai Baimoung

Abstract The atmospheric circulation patterns that were responsible for the heavy flooding that occurred in Thailand in 2011 are examined. This paper also investigates the interannual variation in precipitation over Indochina over a 33-yr period from 1979–2011, focusing on the role of westward-propagating tropical cyclones (TCs) over the Asian monsoon region. Cyclonic anomalies and more westward-propagating TCs than expected from the climatology of the area were observed in 2011 along the monsoon trough from the northern Indian subcontinent, the Bay of Bengal, Indochina, and the western North Pacific, which contributed significantly to the 2011 Thai flood. The strength of monsoon westerlies was normal, which implies that the monsoon westerly was not responsible for the seasonal heavy rainfall in 2011. Similar results were also obtained from the 33-yr statistical analysis. The 5-month total precipitation over Indochina covaried interannually with that along the monsoon trough. In addition, above-normal precipitation over Indochina was observed when enhanced cyclonic circulation with more westward-propagating TCs along the monsoon trough was observed. Notably, the above-normal precipitation was not due to the enhanced monsoon westerly over Indochina. Therefore, the 2011 Thai flood was caused by the typical atmospheric circulation pattern for an above-normal precipitation year. It is noteworthy that the effect of sea surface temperature (SST) forcing over the western North Pacific and the Niño-3.4 region on total precipitation during the summer rainy season over Indochina was unclear over the 33-yr period.


Sign in / Sign up

Export Citation Format

Share Document