scholarly journals Ballistic behavior of boron carbide reinforced AA7075 aluminium alloy using friction stir processing – An experimental study and analytical approach

2016 ◽  
Vol 12 (1) ◽  
pp. 25-31 ◽  
Author(s):  
I. Sudhakar ◽  
G. Madhusudhan Reddy ◽  
K. Srinivasa Rao
2013 ◽  
Vol 554-557 ◽  
pp. 1787-1792 ◽  
Author(s):  
Marek Stanislaw Węglowski

The effect of rotational and travelling speeds and down force on the torque in Friction Stir Processing (FSP) process are presented. To find a dependence combining the spindle torque acting on the tool with the rotational speed, travelling speed and the down force, the artificial neural networks have been applied. Studies have shown that the increase in the rotational speed causes decrease in the torque while the increase in the travelling speed and down force causes the increase in the torque at the same time. The relationship between parameters of the process and the temperature of the tool, based on measurement head TermSTIR, were presented. Tests were conducted on casting aluminium alloy AlSi9Mg. Application of FSP process resulted in a decrease in the porosity in the modified material and microstructure refining


2020 ◽  
Vol 10 (1) ◽  
pp. 408-414
Author(s):  
Nurul Muhayat ◽  
Alvian Restu Putra Utama ◽  

AbstractMechanical alloying can be carried out by a method known as friction stir processing, whereby solid Zn particles in a solution are distributed onto an aluminium alloy plate. The aim of this study was to determine the effects of a volume of Zn particles on the mechanical and physical properties of aluminium 1xxx alloy that had been subjected to friction stir processing. The specimens were plates composed of 1xxx series aluminium. A groove, measuring 12 mm in diameter, was pierced to various depths, and the Zn particles in these containers were then subjected to friction stir processing using a pin-less tool with a diameter of 15 mm. The results showed that the highest hardness was found in the uppermost layer of the workpiece, and this gradually decreased with thickness. An increase in the amount of Zn particles caused an increase in material hardness. The highest hardness of 87.1 HV in the friction stir-processed AA1100 was obtained at the highest volume of Zn compared to the hardness of 44.5 HV, which was obtained for the specimen without the addition of Zn.


Sign in / Sign up

Export Citation Format

Share Document