Inclusion complexes of laccaic acid A with β -cyclodextrin or its derivatives: Phase solubility, solubilization, inclusion mode, and characterization

2017 ◽  
Vol 139 ◽  
pp. 737-746 ◽  
Author(s):  
Lanxiang Liu ◽  
Juan Xu ◽  
Hua Zheng ◽  
Kun Li ◽  
Wenwen Zhang ◽  
...  
Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


2013 ◽  
Vol 79 (3-4) ◽  
pp. 349-356 ◽  
Author(s):  
Dan Xiao ◽  
Bo Yang ◽  
Yu-Lin Zhao ◽  
Xia-Li Liao ◽  
Xue-Min Yang ◽  
...  

INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (06) ◽  
pp. 32-39
Author(s):  
A. K Mahapatra ◽  
◽  
P. N. Murthy

The aim of the study was to enhance the dissolution rate of atovaquone by preparing inclusion complexes with cyclodextrins (β-CD/ HP β-CD) and formulating their orodispersible tablets. Phase solubility studies were conducted by adding 0.5, 1, 2 and 4% of cyclodextrins in water. The values of Gibb’s free energy were found increased. Inclusion complexes of atovaquone were prepared using β -CD/ HP β -CD by kneading method. Tablets were formulated using superdisintegrants i.e., sodium starch glycolate, crospovidone and Ac-Di sol at concentrations of 4, 8 and 12% of tablet weight by direct compression technique. The interaction studies were made by Fourier transform infrared spectroscopy and differential scanning calorimetry, and no significant interaction was observed. Inclusion complexes showed better dissolution than pure atovaquone and HP-β-CD established better than β-CD. Inclusion complexes of atovaquone at 1:0.25 w/w (drug: HP β -CD) in the tablets with 12% of crospovidone showed satisfactory results.


2021 ◽  
pp. 27-32
Author(s):  
Olga Mikhailovna Balakhonova ◽  
Viktoriya Sergeevna Tyukova ◽  
Stanislav Anatolievich Kedik

The paper presents the results of a study of the stability of aqueous solutions of inclusion complexes of hydroxypropyl-β-cyclodextrin with diisopropylphenol in various systems by the Higuchi-Connors phase solubility method. The phase solubility profiles for each system corresponding to the AN type are determined graphically, and the stability constants of the resulting inclusion complexes are calculated. An aqueous solution containing 0.2 % Tween 80 and 0.2 % mannitol was selected as the optimal condition for obtaining the hydroxypropyl-β-cyclodextrin inclusion complex with diisopropylphenol.


Author(s):  
S. Ain ◽  
R. Singh ◽  
Q. Ain

<p><strong>Objective: </strong>The aim of the present study was to carry out characterization and intrinsic dissolution rate study of microwave assisted inclusion complex of poorly water soluble, lipid lowering agent gemfibrozil [5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid]<strong> </strong>with naturally occurring β-cyclodextrins (CDs) or cycloheptaamylase.</p><p><strong>Methods: </strong>In this work, the phase solubility study was performed to find the ratio of drug and cyclodextrin complexes. Inclusion complexes were prepared by kneading and the prepared complex was subjected to microwave drying and conventional drying techniques. The prepared complexes were evaluated by intrinsic dissolution rate studies and equilibrium solubility study. Further characterization was done by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray powder diffractometry (DSC).</p><p><strong>Results: </strong>The phase solubility studies showed a linear A<sub>L</sub>-type diagram indicating the formation of inclusion complexes in 1:1 molar ratio β-CD-gemfibrozil complex with maximum stability constant of 148.88 M<sup>-1</sup>was selected for preparation of inclusion complex. The microwave dried product was identified as the inclusion complex with maximum IDR when compared to the conventional dried product.</p><p><strong>Conclusion: </strong>This study was concluded that the microwave drying is the most suitable of the previously occurring drying techniques. Since it showed the highest solubility and IDR value.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Andreea Creteanu ◽  
Daniela Pamfil ◽  
Cornelia Vasile ◽  
Gladiola Tantaru ◽  
Cristina Mihaela Ghiciuc ◽  
...  

The aim of this study was to improve the solubility of amiodarone hydrochloride (AMD) and the drug release using its inclusion complexes with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes were prepared by coprecipitation and freeze-drying. The solubility enhancement of AMD/HP-β-CD inclusion complexes by 4–22 times was evaluated by the phase solubility method. The inclusion complexes were studied both in solution and in solid state by spectroscopic methods, dynamic light scattering (DLS) and zeta potential analysis, SEM, and DSC. The formulations of AMD/HP-β-CD inclusion complexes both as powdered form and as matrix tablets showed superior pharmacokinetic performance in improving loading and release properties in respect of those of the insoluble AMD drug. In vitro kinetic study reveals a complex mechanism of release occurring in three steps: the first one being attributed to a burst effect and the other two to different bonding existing in inclusion complexes. An in vivo test on matrix tablets containing Kollidon® and chitosan also reveals a multiple (at least two) peaks release diagram because of both structures of the inclusion complexes and also of different sites of absorption in biological media (digestive tract).


2014 ◽  
Vol 70 (a1) ◽  
pp. C992-C992 ◽  
Author(s):  
Mino Caira ◽  
Susan Bourne ◽  
Buntubonke Mzondo

Owing to its potent antioxidant activity,α-lipoic acid (1,2-dithiolane-3-pentanoic acid) is widely used as a supplement and is recommended for treating a number of conditions including chronic liver disease and diabetes. The poor aqueous solubility of the acid (~0.003 M at 250C) has prompted studies of its interaction with cyclodextrins (CDs) as a possible route to improving its solubility. However, relatively few studies have focused on the isolation of solid CD inclusion complexes of the antioxidant, and in most cases the racemic form of the acid was employed. In the comprehensive study reported here, the bioactive (R)-(+)-enantiomeric form of the molecule was used exclusively, resulting in the isolation and structural characterization of its inclusion complexes with each of the native host CDs (α-, β- and γ-CD) as well as permethylated α-CD (TRIMEA), permethylated β-CD (TRIMEB) and 2,6-dimethylated-β-CD (DIMEB). The α-CD complex crystallizes in the trigonal system, space group R32, with three independent CD molecules in the asymmetric unit and is not isostructural with any known CD complex while the β-CD complex crystallizes in the monoclinic system (C2). With the host γ-CD, an orthorhombic (pseudo-tetragonal) inclusion complex was identified, an unusual result as γ-CD complexes generally crystallize in the tetragonal space group P4212. The complexes with TRIMEA and TRIMEB crystallize in the orthorhombic system (P212121), the modes of inclusion of the (R)-(+)-α-lipoic acid molecule in the respective hosts being reversed: the guest molecule is fully encapsulated by the former host with the dithiolane ring located at the secondary rim, while in the latter host, the dithiolane ring rests on the concave surface of the host cavity at the primary side. A significant level of guest disorder was detected in the inclusion complex with DIMEB (P21). Thermal and phase-solubility analyses complemented the X-ray structural studies.


2010 ◽  
Vol 8 (4) ◽  
pp. 953-962 ◽  
Author(s):  
Vivek Sinha ◽  
Renu Chadha ◽  
Honey Goel ◽  

AbstractThe purpose of this study was to explore the utility of hydroxypropyl-β-cyclodextrin (HP-β-CD) systems in forming inclusion complexes with the anti-rheumatic or anti-arthritic drug, etodolac (EDC), in order to overcome the limitation of its poor aqueous solubility. This inclusion system achieved high solubility for the hydrophobic molecule. The physical and chemical properties of each inclusion compound were investigated. Complexes of EDC with HP-β-CD were obtained using the kneading and co-evaporation techniques. Solid state characterization of the products was carried out using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Studies in the solution state were performed using UV-Vis spectrophotometry and 1H-NMR spectroscopy. Phase solubility profiles with HP-β-CD employed was found to be AL type. Stability constants (Kc) from the phase solubility diagrams were calculated indicating the formation of 1:1 inclusion complex. Stability studies in the solid state and in liquid state were performed; the possible degradation by RP-HPLC was monitored. The dissolution studies revealed that EDC dissolution rate was improved by the formation of inclusion complexes.


2015 ◽  
Vol 11 ◽  
pp. 2763-2773 ◽  
Author(s):  
Waratchada Sangpheak ◽  
Jintawee Kicuntod ◽  
Roswitha Schuster ◽  
Thanyada Rungrotmongkol ◽  
Peter Wolschann ◽  
...  

The aim of this work is to improve physical properties and biological activities of the two flavanones hesperetin and naringenin by complexation with β-cyclodextrin (β-CD) and its methylated derivatives (2,6-di-O-methyl-β-cyclodextrin, DM-β-CD and randomly methylated-β-CD, RAMEB). The free energies of inclusion complexes between hesperetin with cyclodextrins (β-CD and DM-β-CD) were theoretically investigated by molecular dynamics simulation. The free energy values obtained suggested a more stable inclusion complex with DM-β-CD. The vdW force is the main guest–host interaction when hesperetin binds with CDs. The phase solubility diagram showed the formation of a soluble complex of AL type, with higher increase in solubility and stability when hesperetin and naringenin were complexed with RAMEB. Solid complexes were prepared by freeze-drying, and the data from differential scanning calorimetry (DSC) confirmed the formation of inclusion complexes. The data obtained by the dissolution method showed that complexation with RAMEB resulted in a better release of both flavanones to aqueous solution. The flavanones-β-CD/DM-β-CD complexes demonstrated a similar or a slight increase in anti-inflammatory activity and cytotoxicity towards three different cancer cell lines. The overall results suggested that solubilities and bioactivities of both flavanones were increased by complexation with methylated β-CDs.


Sign in / Sign up

Export Citation Format

Share Document