Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries over the North Indian Ocean

Author(s):  
Md. Jalal Uddin ◽  
Zahan Most. Nasrin ◽  
Li Yubin
2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2020 ◽  
Vol 15 (3) ◽  
pp. 526-534
Author(s):  
Abhisek Pal ◽  
Soumendu Chatterjee

Tropical cyclone (TC) genesis over the North Indian Ocean (NIO) region showed significant amount of both spatial and temporal variability.It was observed that the TC genesis was significantly suppressed during the monsoon (June-September) compared to pre-monsoon (March-May) and post-monsoon (October-December) season specifically in terms of severe cyclonic storms (SCS) frequency. The Bay of Bengal (BoB) was characterized by higher TC frequency but lower intensity compared to the Arabian Sea (AS). It was also observed that the TC genesis locations were shifted significantly seasonally.The movement of the TCs also portrayed some significant seasonal differences. The pre-monsoon and post-monsoon season was responsible for generating TCs with higher values of accumulated cyclone energy (ACE) compared to the monsoon. The time series of TC frequency showed a statistically significant decreasing trend whereas the time series of ACE showed astatistically significant increasing trend over the NIO.


2018 ◽  
Author(s):  
Qin Wang ◽  
John C. Moore ◽  
Duoying Ji

Abstract. The thermodynamics of the ocean and atmosphere partly determine variability in tropical cyclone (TC) number and intensity and are readily accessible from climate model output, but a complete description of TC variability requires much more dynamical data than climate models can provide at present. Genesis potential index (GPI) and ventilation index (VI) are combinations of potential intensity, vertical wind shear, relative humidity, midlevel entropy deficit, and absolute vorticity that can quantify both thermodynamic and dynamic forcing of TC activity under different climate states. Here we use six CMIP5 models that have run the RCP4.5 experiment and the Geoengineering Model Intercomparison Project (GeoMIP) stratospheric aerosol injection G4 experiment, to calculate the two TC indices over the 2020 to 2069 period across the 6 ocean basins that generate tropical cyclones. Globally, GPI under G4 is lower than under RCP4.5, though both have a slight increasing trend. Spatial patterns in the effectiveness of geoengineering show reductions in TC in the North Atlantic basin, and Northern Indian Ocean in all models except NorESM1-M. In the North Pacific, most models also show relative reductions under G4. Most models project potential intensity and relative humidity to be the dominant variables affecting genesis potential. Changes in vertical wind shear are significant, but both it and vorticity exhibit relatively small changes with large variation across both models and ocean basins. We find that tropopause temperature is not a useful addition to sea surface temperature in projecting TC genesis, despite radiative heating of the stratosphere due to the aerosol injection, and heating of the upper troposphere affecting static stability and potential intensity. Thus, simplified statistical methods that quantify the thermodynamic state of the major genesis basins may reasonably be used to examine stratospheric aerosol geoengineering impacts on TC activity.


2008 ◽  
Vol 136 (11) ◽  
pp. 4320-4333 ◽  
Author(s):  
Alexander Lowag ◽  
Michael L. Black ◽  
Matthew D. Eastin

Abstract Hurricane Bret underwent a rapid intensification (RI) and subsequent weakening between 1200 UTC 21 August and 1200 UTC 22 August 1999 before it made landfall on the Texas coast 12 h later. Its minimum sea level pressure fell 35 hPa from 979 to 944 hPa within 24 h. During this period, aircraft of the National Oceanic and Atmospheric Administration (NOAA) flew several research missions that sampled the environment and inner core of the storm. These datasets are combined with gridded data from the National Centers for Environmental Prediction (NCEP) Global Model and the NCEP–National Center for Atmospheric Research (NCAR) reanalyses to document Bret’s atmospheric and oceanic environment as well as their relation to the observed structural and intensity changes. Bret’s RI was linked to movement over a warm ocean eddy and high sea surface temperatures (SSTs) in the Gulf of Mexico coupled with a concurrent decrease in vertical wind shear. SSTs at the beginning of the storm’s RI were approximately 29°C and steadily increased to 30°C as it moved to the north. The vertical wind shear relaxed to less than 10 kt during this time. Mean values of oceanic heat content (OHC) beneath the storm were about 20% higher at the beginning of the RI period than 6 h prior. The subsequent weakening was linked to the cooling of near-coastal shelf waters (to between 25° and 26°C) by prestorm mixing combined with an increase in vertical wind shear. The available observations suggest no intrusion of dry air into the circulation core contributed to the intensity evolution. Sensitivity studies with the Statistical Hurricane Intensity Prediction Scheme (SHIPS) model were conducted to quantitatively describe the influence of environmental conditions on the intensity forecast. Four different cases with modified vertical wind shear and/or SSTs were studied. Differences between the four cases were relatively small because of the model design, but the greatest intensity changes resulted for much cooler prescribed SSTs. The results of this study underscore the importance of OHC and vertical wind shear as significant factors during RIs; however, internal dynamical processes appear to play a more critical role when a favorable environment is present.


2005 ◽  
Vol 62 (9) ◽  
pp. 3193-3212 ◽  
Author(s):  
Joey H. Y. Kwok ◽  
Johnny C. L. Chan

Abstract The influence of a uniform flow on the structural changes of a tropical cyclone (TC) is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Idealized experiments are performed on either an f plane or a β plane. A strong uniform flow on an f plane results in a weaker vortex due to the development of a vertical wind shear induced by the asymmetric vertical motion and a rotation of upper-level anticyclone. The asymmetric vertical motion also reduces the secondary circulation of the vortex. On a β plane with no flow, a broad anticyclonic flow is found to the southeast of the vortex, which expands with time. Similar to the f-plane case, asymmetric vertical motion and vertical wind shear are also found. This beta-induced shear weakens the no-flow case significantly relative to that on an f plane. When a uniform flow is imposed on a β plane, an easterly flow produces a stronger asymmetry whereas a westerly flow reduces it. In addition, an easterly uniform flow tends to strengthen the beta-induced shear whereas a westerly flow appears to reduce it by altering the magnitude and direction of the shear vector. As a result, a westerly flow enhances TC development while an easterly flow reduces it. The vortex tilt and midlevel warming found in this study agree with the previous investigations of vertical wind shear. A strong uniform flow with a constant f results in a tilted and deformed potential vorticity at the upper levels. For a variable f, such tilting is more pronounced for a vortex in an easterly flow, while a westerly flow reduces the tilt. In addition, the vortex tilt appears to be related to the midlevel warming such that the warm core in the lower troposphere cannot extent upward, which leads to the subsequent weakening of the TC.


2005 ◽  
Vol 20 (2) ◽  
pp. 199-211 ◽  
Author(s):  
Hui Yu ◽  
H. Joe Kwon

Abstract Using large-scale analyses, the effect of tropical cyclone–trough interaction on tropical cyclone (TC) intensity change is readdressed by studying the evolution of upper-level eddy flux convergence (EFC) of angular momentum and vertical wind shear for two TCs in the western North Pacific [Typhoons Prapiroon (2000) and Olga (1999)]. Major findings include the following: 1) In spite of decreasing SST, the cyclonic inflow associated with a midlatitude trough should have played an important role in Prapiroon’s intensification to its maximum intensity and the maintenance after recurvature through an increase in EFC. The accompanied large vertical wind shear is concentrated in a shallow layer in the upper troposphere. 2) Although Olga also recurved downstream of a midlatitude trough, its development and maintenance were not strongly influenced by the trough. A TC could maintain itself in an environment with or without upper-level eddy momentum forcing. 3) Both TCs started to decay over cold SST in a large EFC and vertical wind shear environment imposed by the trough. 4) Uncertainty of input adds difficulties in quantitative TC intensity forecasting.


2015 ◽  
Vol 143 (5) ◽  
pp. 1762-1781 ◽  
Author(s):  
Fei He ◽  
Derek J. Posselt ◽  
Colin M. Zarzycki ◽  
Christiane Jablonowski

Abstract This paper presents a balanced tropical cyclone (TC) test case designed to improve current understanding of how atmospheric general circulation model (AGCM) configurations affect simulated TC development and behavior. It consists of an analytic initial condition comprising two independently balanced components. The first provides a vortical TC seed, while the second adds a planetary-scale zonal flow with height-dependent velocity and imposes background vertical wind shear (VWS) on the TC seed. The environmental flow satisfies the steady-state hydrostatic primitive equations in spherical coordinates and is in balance with other background field variables (e.g., temperature, surface geopotential). The evolution of idealized TCs in the test case framework is illustrated in 10-day simulations performed with the Community Atmosphere Model, version 5.1.1 (CAM 5.1.1). Environmental wind profiles with different magnitudes, directions, and vertical inflection points are applied to ensure that the technique is robust to changes in the VWS characteristics. The well-known shear-induced intensity change and structural asymmetry in tropical cyclones are well captured. Sensitivity of TC evolution to small perturbations in the initial vortex is also quantitatively addressed to validate the numerical robustness of the technique. It is concluded that the enhanced TC test case can be used to evaluate the impact of model choice (e.g., resolution, physical parameterizations) on the simulation and representation of TC-like vortices in AGCMs.


Sign in / Sign up

Export Citation Format

Share Document