scholarly journals Shotgun mass spectrometry-based lipid profiling identifies and distinguishes between chronic inflammatory diseases

EBioMedicine ◽  
2021 ◽  
Vol 70 ◽  
pp. 103504
Author(s):  
Rune Matthiesen ◽  
Chris Lauber ◽  
Julio L. Sampaio ◽  
Neuza Domingues ◽  
Liliana Alves ◽  
...  
2021 ◽  
Author(s):  
Rune Matthiesen ◽  
Chris Lauber ◽  
Julio L. Sampaio ◽  
Neuza Domingues ◽  
Liliana Alves ◽  
...  

AbstractBackgroundInflammation impacts several acute and chronic diseases causing localized stress and cell death, releasing tissue-specific lipids into the circulation from inflamed cells and tissues. The plasma lipidome may be expected to reflect the type of inflammation and the specific cells and tissues involved. However, deep lipid profiles of major chronic inflammatory diseases have not been compared.MethodsWe compare the plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related cardiovascular disease (CVD) including ischemic stroke (IS), and systemic lupus erythematosus (SLE), to each other and to age-matched controls. The controls had never suffered from any of these diseases. Blood plasma lipidomes were screened by a top-down shotgun MS-based analysis without liquid chromatographic separation. Lipid profiling based on MS was performed on a cohort of 427 individuals. The cohort constitutes 85 controls (control), 217 with cardiovascular disease (further classified into CVD 1-5), 21 ischemic stroke patients (IS), and 104 patients suffering from systemic lupus erythematosis (SLE). 596 lipids were profiled which were quality filtered for further evaluation and determination of potential biomarkers. Lipidomes were compared by linear regression and evaluated by machine learning classifiers.ResultsMachine learning classifiers based on the plasma lipidomes of patients suffering from CVD and SLE allowed clear distinction of these two chronic inflammatory diseases from each other and from healthy age-matched controls and body mass index (BMI). We demonstrate convincing evidence for the capability of lipidomics to separate the studied chronic and inflammatory diseases from controls based on independent validation test set classification performance (CVD vs control - Sensitivity: 0.90, Specificity: 0.98; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control – Sensitivity: 1, Specificity: 0.88) and from each other (SLE vs CVD □ Sensitivity: 0.91, Specificity: 1). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups from each other and from the controls. In addition, CVD severities, as classified into five clinical groups, were partially separable by linear discriminant analysis. Notably, significantly dysregulated lipids between pathological groups versus control displayed a reverse lipid regulation pattern compared to statin treated controls versus non treated controls.ConclusionDysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes. Dysregulated lipids are partially but not fully counterbalanced by statin treatment.


2015 ◽  
Vol 22 (2) ◽  
pp. 247-264 ◽  
Author(s):  
Nilanjan Ghosh ◽  
Asif Ali ◽  
Rituparna Ghosh ◽  
Shaileyee Das ◽  
Subhash C. Mandal ◽  
...  

2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2021 ◽  
Vol 2 (1) ◽  
pp. 100235
Author(s):  
Wei-Yuan Hsieh ◽  
Kevin J. Williams ◽  
Baolong Su ◽  
Steven J. Bensinger

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathrin Beyer ◽  
Stein Atle Lie ◽  
Bodil Bjørndal ◽  
Rolf K. Berge ◽  
Asbjørn Svardal ◽  
...  

AbstractRheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases with several pathogenic pathways in common. Evidence supports an association between the diseases, but the exact underlying mechanisms behind the connection are still under investigation. Lipid, fatty acid (FA) and metabolic profile alterations have been associated with several chronic inflammatory diseases, including RA and periodontitis. Mitochondria have a central role in regulating cellular bioenergetic and whole-body metabolic homeostasis, and mitochondrial dysfunction has been proposed as a possible link between the two disorders. The aim of this cross-sectional study was to explore whole-blood FA, serum lipid composition, and carnitine- and choline derivatives in 78 RA outpatients with different degrees of periodontal inflammation. The main findings were alterations in lipid, FA, and carnitine- and choline derivative profiles. More specifically, higher total FA and total cholesterol concentrations were found in active RA. Elevated phospholipid concentrations with concomitant lower choline, elevated medium-chain acylcarnitines (MC-AC), and decreased ratios of MC-AC and long-chain (LC)-AC were associated with prednisolone medication. This may indicate an altered mitochondrial function in relation to the increased inflammatory status in RA disease. Our findings may support the need for interdisciplinary collaboration within the field of medicine and dentistry in patient stratification to improve personalized treatment. Longitudinal studies should be conducted to further assess the potential impact of mitochondrial dysfunction on RA and periodontitis.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1704
Author(s):  
Diego Angosto-Bazarra ◽  
Cristina Molina-López ◽  
Alejandro Peñín-Franch ◽  
Laura Hurtado-Navarro ◽  
Pablo Pelegrín

Inflammasomes are immune cytosolic oligomers involved in the initiation and progression of multiple pathologies and diseases. The tight regulation of these immune sensors is necessary to control an optimal inflammatory response and recover organism homeostasis. Prolonged activation of inflammasomes result in the development of chronic inflammatory diseases, and the use of small drug-like inhibitory molecules are emerging as promising anti-inflammatory therapies. Different aspects have to be taken in consideration when designing inflammasome inhibitors. This review summarizes the different techniques that can be used to study the mechanism of action of potential inflammasome inhibitory molecules.


2021 ◽  
pp. 105253
Author(s):  
Pascal Richette ◽  
Matthieu Allez ◽  
Vincent Descamps ◽  
Lucas Perray ◽  
Simon Pilet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document