Exploiting Anti-Inflammation Effects of Flavonoids in Chronic Inflammatory Diseases

2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.

2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1203
Author(s):  
Gaber E. El-Desoky ◽  
Saikh M. Wabaidur ◽  
Mohamed A. Habila ◽  
Zeid A. AlOthman

In this study, the cellular synergistic and antagonistic effects of mixing tartrazine (TZ) with curcumin (CUR) or curcumin-nanoparticles (CUR-NPs) were investigated. The in vivo administration of TZ, CUR, CUR-NPs, and TZ mixed with CUR or CUR-NPs at 75:25 or 50:50 ratios were tested. The results indicated that CUR and CUR -NPs reduced the cytotoxicity effects of TZ on skin fibroblast BJ-1 (ATCC® CRL-2522™) normal cells. However, among the tested materials, CUR-NPs had highest in vitro and in vivo antioxidant activity compared to TZ. Furthermore, CUR-NPs and CUR exhibited anticancer activity against HepG-2 liver cancer cells via apoptosis induction. The key apoptosis protein genes Caspase-3, p53, and Bax were upregulated, whereas Bc-2, which exhibits anti-apoptosis activity, was downregulated. Our results indicated that the nano-formulation of CUR alters its physicochemical properties, including the size and shape, and increases its antioxidant and anticancer properties. CUR-NPs also overcome the side effect of using TZ as a yellow color and food preservative additive, due to its reduced toxicity, oxidative stress, and carcinogenicity. In agreement with our previous findings, CUR and CUR-NPs were able to protect against cellular oxidative stress by stimulating endogenous antioxidant defense enzymes, including superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione-S-transferase (GST). We conclude that the nano-formulation of CUR exhibits economic benefits as a new strategy to use CUR as a food additive at the cellular level.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ewa Pniewska ◽  
Rafal Pawliczak

The increased morbidity, mortality, and ineffective treatment associated with the pathogenesis of chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD) have generated much research interest. The key role is played by phospholipases from the A2superfamily: enzymes which are involved in inflammation through participation in pro- and anti-inflammatory mediators production and have an impact on many immunocompetent cells. The 30 members of the A2superfamily are divided into 7 groups. Their role in asthma and COPD has been studiedin vitroandin vivo(animal models, cell cultures, and patients). This paper contains complete and updated information about the involvement of particular enzymes in the etiology and course of asthma and COPD.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1044
Author(s):  
Monica Bucciantini ◽  
Manuela Leri ◽  
Pamela Nardiello ◽  
Fiorella Casamenti ◽  
Massimo Stefani

Oxidative stress and inflammation triggered by increased oxidative stress are the cause of many chronic diseases. The lack of anti-inflammatory drugs without side-effects has stimulated the search for new active substances. Plant-derived compounds provide new potential anti-inflammatory and antioxidant molecules. Natural products are structurally optimized by evolution to serve particular biological functions, including the regulation of endogenous defense mechanisms and interaction with other organisms. This property explains their relevance for infectious diseases and cancer. Recently, among the various natural substances, polyphenols from extra virgin olive oil (EVOO), an important element of the Mediterranean diet, have aroused growing interest. Extensive studies have shown the potent therapeutic effects of these bioactive molecules against a series of chronic diseases, such as cardiovascular diseases, diabetes, neurodegenerative disorders and cancer. This review begins from the chemical structure, abundance and bioavailability of the main EVOO polyphenols to highlight the effects and the possible molecular mechanism(s) of action of these compounds against inflammation and oxidation, in vitro and in vivo. In addition, the mechanisms of inhibition of molecular signaling pathways activated by oxidative stress by EVOO polyphenols are discussed, together with their possible roles in inflammation-mediated chronic disorders, also taking into account meta-analysis of population studies and clinical trials.


2021 ◽  
Vol 22 (4) ◽  
pp. 2027
Author(s):  
Maria Vittoria Barone ◽  
Salvatore Auricchio

Celiac disease (CD) is a type of inflammatory chronic disease caused by nutrients such as gliadin that induce a TC (T cell)-mediated response in a partially known genetical background in an environment predisposed to inflammation, including viruses and food. Various experimental and clinical observations suggest that multiple agents such as viruses and bacteria have some common, inflammatory pathways predisposing individuals to chronic inflammatory diseases including celiac disease (CD). More recently, a Western diet and lifestyle have been linked to tissue inflammation and increase in chronic inflammatory diseases. In CD, the gliadin protein itself has been shown to be able to induce inflammation. A cooperation between viruses and gliadin is present in vitro and in vivo with common mechanisms to induce inflammation. Nutrients could have also a protective effect on CD, and in fact the anti-inflammatory Mediterranean diet has a protective effect on the development of CD in children. The possible impact of these observations on clinical practice is discussed.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Aimin Liu ◽  
Wei Zhao ◽  
Buxin Zhang ◽  
Yuanhui Tu ◽  
Qingxing Wang ◽  
...  

Abstract Cimifugin is an important component of chromones in the dry roots of Saposhikovia divaricata for treating inflammatory diseases. However, the possible effect of cimifugin in psoriasis needs further investigation. This current work was designed to evaluate the effects of cimifugin in psoriasis in vivo and in vitro, and unravel the underlying molecular mechanism. Here, we used imiquimod (IMQ) or tumor necrosis factor (TNF)-α to induce a psoriasis-like model in mice or keratinocytes. Obviously, the results showed that cimifugin reduced epidermal hyperplasia, psoriasis area severity index (PASI) scores, ear thickness and histological psoriasiform lesions in IMQ-induced mice. The decreased levels of reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), and the accumulation of malondialdehyde (MDA) in skin tissues by IMQ were attenuated by cimifugin. Furthermore, it was observed that cimifugin effectively reversed IMQ-induced up-regulation of proinflammatory cytokines, including TNF-α, IL-6, IL-1β, IL-17A, and IL-22. Mechanically, we noticed that cimifugin inhibited IMQ-activated phosphorylation of NF-κB (IκB and p65) and MAPK (JNK, ERK, and p38) signaling pathways. Similar alterations for oxidative stress and inflammation parameters were also detected in TNF-α-treated HaCaT cells. In addition, cimifugin-induced down-regulation of ICAM-1 were observed in TNF-α-treated cells. Altogether, our findings suggest that cimifugin protects against oxidative stress and inflammation in psoriasis-like pathogenesis by inactivating NF-κB/MAPK signaling pathway, which may develop a novel and effective drug for the therapy of psoriasis.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Gabrielle Fredman

Introduction: Imbalances between pro-inflammatory and pro-resolving mediators can lead to chronic inflammatory diseases, such as atherosclerosis. Hypothesis: The balance of arachidonic acid (AA)-derived mediators in leukocytes is thought to be achieved through intracellular localization of 5-lipoxygenase (5-LOX): nuclear 5-LOX favors the biosynthesis of pro-inflammatory leukotriene B 4 (LTB 4 ), while, in theory, cytoplasmic 5-LOX could favor the biosynthesis of pro-resolving lipoxin A 4 (LXA 4 ). This balance is shifted in favor of LXA 4 by resolvin D1 (RvD1), a specialized pro-resolving mediator (SPM) derived from docosahexaenoic acid (DHA), but the mechanism is not known. Hence we hypothesized that RvD1 regulates 5-LOX localization in macrophages. Methods/Results: Here we report a new pathway through which RvD1 promotes nuclear exclusion of 5-LOX and thereby suppresses LTB 4 and enhances LXA 4 in macrophages. RvD1, by activating its receptor FPR2/ALX, suppresses cytosolic calcium and decreases activation of the calcium-sensitive kinase CaMKII. CaMKII inhibition suppresses activation P38 and MAPKAPK2 kinases, which reduces Ser271 phosphorylation of 5-LOX and shifts 5-LOX from the nucleus to the cytoplasm. As such, RvD1’s ability to decrease nuclear 5-LOX and the LTB 4 :LXA 4 ratio in vitro and in vivo was mimicked by macrophages lacking CaMKII or expressing S271A-5-LOX. Importantly, nuclear localization of 5-LOX has been reported in unstable advanced human atherosclerotic lesions, hence strategies to reverse this process are of interest. In this regard, RvD1 treatment of Ldlr -/- mice reduced macrophage 5-LOX localization and stabilized advanced plaques. Conclusions: Knowledge of this mechanism may provide new strategies for promoting inflammation resolution in chronic inflammatory diseases, like atherosclerosis.


2011 ◽  
Vol 2 (1-2) ◽  
pp. 103-114 ◽  
Author(s):  
Kota V. Ramana

AbstractIn the past years aldose reductase (AKR1B1; AR) is thought to be involved in the pathogenesis of secondary diabetic complications such as retinopathy, neuropathy, nephropathy and cataractogenesis. Subsequently, several AR inhibitors have been developed and tested for diabetic complications. Although these inhibitors have found to be safe for human use, they have not been successful in clinical studies because of limited efficacy. Recently, the potential physiological role of AR has been reassessed from a different point of view. Diverse groups suggested that AR, in addition to reducing glucose, also efficiently reduces oxidative stress-generated lipid peroxidation-derived aldehydes and their glutathione conjugates. Because lipid aldehydes alter cellular signals by regulating the activation of transcription factors such as NF-κB and AP1, inhibition of AR could inhibit such events. Indeed, a wide array of recent experimental evidence indicates that the inhibition of AR prevents oxidative stress-induced activation of NF-κB and AP1 signals that lead to cell death or growth. Furthermore, AR inhibitors have been shown to prevent inflammatory complications such as sepsis, asthma, colon cancer and uveitis in rodent animal models. The new experimental in vitro and in vivo data has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing other inflammatory complications than diabetes. This review describes how recent studies have identified novel plethoric physiological and pathophysiological significance of AR in mediating inflammatory complications, and how the discovery of such new insights for this old enzyme could have considerable importance in envisioning potential new therapeutic strategies for the prevention or treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document