scholarly journals Water-sanitation-health nexus in the Indus-Ganga-Brahmaputra River Basin: need for wastewater surveillance of SARS-CoV-2 for preparedness during the future waves of pandemic

Author(s):  
Paromita Chakraborty ◽  
P.G. Vinod ◽  
Jabir Hussain Syed ◽  
Balram Pokhrel ◽  
Girija Bharat ◽  
...  
10.1596/24238 ◽  
2016 ◽  
Author(s):  
Y.C. Ethan Yang ◽  
Sungwook Wi ◽  
Patrick A. Ray ◽  
Casey M. Brown ◽  
Abedalrazq F. Khalil

2016 ◽  
Vol 37 ◽  
pp. 16-30 ◽  
Author(s):  
Y.C. Ethan Yang ◽  
Sungwook Wi ◽  
Patrick A. Ray ◽  
Casey M. Brown ◽  
Abedalrazq F. Khalil

2021 ◽  
Vol 21 ◽  
pp. 100206
Author(s):  
Connie A. Woodhouse ◽  
Rebecca M. Smith ◽  
Stephanie A. McAfee ◽  
Gregory T. Pederson ◽  
Gregory J. McCabe ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2019 ◽  
Vol 107 ◽  
pp. 171-186 ◽  
Author(s):  
Swati Verma ◽  
Abhijit Mukherjee ◽  
Chandan Mahanta ◽  
Runti Choudhury ◽  
Rakesh P. Badoni ◽  
...  

Zootaxa ◽  
2021 ◽  
Vol 5023 (2) ◽  
pp. 239-250
Author(s):  
LAISHRAM KOSYGIN ◽  
PRATIMA SINGH ◽  
SHIBANANDA RATH

Glyptothorax rupiri, a new sisorid catfish, is described from the Brahmaputra River basin in Arunachal Pradesh, northeast India. It differs from its congeners in the Indian subcontinent by the following combination of characters: the presence of plicae on the ventral surface of the pectoral spine and first pelvic-fin ray; a posteriorly serrated dorsal-fin spine, its length 11.3–12.2% SL; body depth at anus 11.2–13.4% SL; a thoracic adhesive apparatus longer than broad, with a V-shaped median depression which opens posteriorly; an arrow-shaped anterior nuchal plate element; adipose-fin base length 10.9–12.6% SL; nasal barbel not reaching anterior orbital margin; 14–18 serrae on posterior margin of the pectoral-fin spine; body with two longitudinal pale-cream stripes; densely tuberculated skin; and the presence of numerous tubercles on the dorsal surface of pectoral and pelvic-fin rays.  


2013 ◽  
Vol 13 (12) ◽  
pp. 3145-3156 ◽  
Author(s):  
M. Velasco ◽  
P. A. Versini ◽  
A. Cabello ◽  
A. Barrera-Escoda

Abstract. Global change may imply important changes in the future occurrence and intensity of extreme events. Climate scenarios characterizing these plausible changes were previously obtained for the Llobregat River basin (NE Spain). This paper presents the implementation of these scenarios in the HBV (Hydrologiska Byråns Vattenbalansavdelning) hydrological model. Then, the expected changes in terms of flash flood occurrence and intensity are assessed for two different sub-basins: the Alt Llobregat and the Anoia (Llobregat River basin). The assessment of future flash floods has been done in terms of the intensity and occurrence of extreme events, using a peak over threshold (POT) analysis. For these two sub-basins, most of the simulated scenarios present an increase of the intensity of the peak discharge values. On the other hand, the future occurrence follows different trends in the two sub-basins: an increase is observed in Alt Llobregat but a decrease occurs in Anoia. Despite the uncertainties that appear in the whole process, the results obtained can shed some light on how future flash floods events may occur.


2010 ◽  
Vol 7 (3) ◽  
pp. 3159-3188 ◽  
Author(s):  
Y. Huang ◽  
W. F. Yang ◽  
L. Chen

Abstract. Doubtlessly, global climate change and its impacts have caught increasing attention from all sectors of the society world-widely. Among all those affected aspects, hydrological circle has been found rather sensitive to climate change. Climate change, either as the result or as the driving-force, has intensified the uneven distribution of water resources in the Changjiang (Yangtze) River basin, China. In turn, drought and flooding problems have been aggravated which has brought new challenges to current hydraulic works such as dike or reservoirs which were designed and constructed based on the historical hydrological characteristics, yet has been significantly changed due to climate change impact. Thus, it is necessary to consider the climate change impacts in basin planning and water resources management, currently and in the future. To serve such purpose, research has been carried out on climate change impact on water resources (and hydrological circle) in Changjiang River. The paper presents the main findings of the research, including main findings from analysis of historical hydro-meteorological data in Changjiang River, and runoff change trends in the future using temperature and precipitation predictions calculated based on different emission scenarios of the 24 Global Climate Modes (GCMs) which has been used in the 4th IPCC assessment report. In this research, two types of macro-scope statistical and hydrological models were developed to simulate runoff prediction. Concerning the change trends obtained from the historical data and the projection from GCMs results, the trend of changes in water resources impacted by climate change was analyzed for Changjiang River. Uncertainty of using the models and data were as well analyzed.


Sign in / Sign up

Export Citation Format

Share Document