scholarly journals Shared and environmentally just responsibility for global biodiversity loss

2022 ◽  
Vol 194 ◽  
pp. 107339
Author(s):  
Zhongxiao Sun ◽  
Paul Behrens ◽  
Arnold Tukker ◽  
Martin Bruckner ◽  
Laura Scherer
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yvonne Oelmann ◽  
Markus Lange ◽  
Sophia Leimer ◽  
Christiane Roscher ◽  
Felipe Aburto ◽  
...  

AbstractExperiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


2020 ◽  
Vol 12 (10) ◽  
pp. 4277
Author(s):  
Matthias Winfried Kleespies ◽  
Paul Wilhelm Dierkes

The UN's sustainable development goals (SDGs), which aim to solve important economic, social, and environmental problems of humanity, are to be supported by education for sustainable development (ESD). Empirical studies on the success of the implementation of the SDGs in the field of education are still pending. For this reason, using the loss of global biodiversity as an example, this study examined the extent to which high school students, teacher trainees in biology, and biology bachelor students can identify the causes of the global biodiversity loss. A new questioning tool was developed and tested on 889 participants. In addition, the relationship between connection to nature and the personal assessment about biodiversity threats was examined. The factor analysis of the scale used showed that 11 out of 16 items were assigned to the intended factor. The comparison between high school students, teacher trainees in biology, and biology bachelor students showed no significant difference in overall assessment of the reasons for global biodiversity loss. When comparing the three risk levels in which the risk factors for biodiversity could be divided, across the three student groups, only minor differences were found. Therefore, a specific education of prospective teachers is necessary, as they have to pass on the competence as multipliers to their students. No significant difference could be found when examining the relationship between connection to nature and the overall scores of the assessment scale for the reasons of biodiversity loss. However, it was found that people who felt more connected to nature were more capable of assessing the main causes of risk for global biodiversity, while people who felt less connected to nature achieved better scores for the medium factors.


Significance No substantive agreements emerged. Global targets to limit biodiversity loss were agreed in 2010, but all were missed and biodiversity loss has accelerated. The 'Kunming Declaration' does indicate some political will, but any enforceable delivery plans will have to wait for the second part of COP15 next year. Impacts The global biodiversity crisis is arguably as serious and pressing as the climate crisis. The low profile of COP15 shows that the severity of the problem is not yet widely recognised. The goal of making 30% of earth's land and seas 'protected' by 2030 provides new focus; disputes will focus on what it actually means. As host, Beijing will want to demonstrate success and will put pressure on other governments. Biodiversity is difficult even to measure, making is extremely challenging to create clear structures for accountable implementation.


2018 ◽  
Vol 10 (8) ◽  
pp. 2764 ◽  
Author(s):  
Abhishek Chaudhary ◽  
Arne Mooers

Efficient forward-looking mitigation measures are needed to halt the global biodiversity decline. These require spatially explicit scenarios of expected changes in multiple indicators of biodiversity under future socio-economic and environmental conditions. Here, we link six future (2050 and 2100) global gridded maps (0.25° × 0.25° resolution) available from the land use harmonization (LUH) database, representing alternative concentration pathways (RCP) and shared socio-economic pathways (SSPs), with the countryside species–area relationship model to project the future land use change driven rates of species extinctions and phylogenetic diversity loss (in million years) for mammals, birds, and amphibians in each of the 804 terrestrial ecoregions and 176 countries and compare them with the current (1900–2015) and past (850–1900) rates of biodiversity loss. Future land-use changes are projected to commit an additional 209–818 endemic species and 1190–4402 million years of evolutionary history to extinction by 2100 depending upon the scenario. These estimates are driven by land use change only and would likely be higher once the direct effects of climate change on species are included. Among the three taxa, highest diversity loss is projected for amphibians. We found that the most aggressive climate mitigation scenario (RCP2.6 SSP-1), representing a world shifting towards a radically more sustainable path, including increasing crop yields, reduced meat production, and reduced tropical deforestation coupled with high trade, projects the lowest land use change driven global biodiversity loss. The results show that hotspots of future biodiversity loss differ depending upon the scenario, taxon, and metric considered. Future extinctions could potentially be reduced if habitat preservation is incorporated into national development plans, especially for biodiverse, low-income countries such as Indonesia, Madagascar, Tanzania, Philippines, and The Democratic Republic of Congo that are otherwise projected to suffer a high number of land use change driven extinctions under all scenarios.


2021 ◽  
Author(s):  
Joy A Kumagai ◽  
Fabio Favoretto ◽  
Sara Pruckner ◽  
Alex David Rogers ◽  
Lauren V Weatherdon ◽  
...  

A worldwide call to implement habitat protection aims to halt biodiversity loss. To monitor the extent of coastal and marine habitats within protected areas (PAs) in a standardized, open source, and reproducible way, we constructed the Local and the Global Habitat Protection Indexes (LHPI and GHPI, respectively). The LHPI pinpoints the jurisdictions with the greatest opportunity to expand their own PAs, while the GHPI showcases which jurisdictions contribute the most in area to the protection of these habitats globally. Jurisdictions were evaluated to understand which have the highest opportunity to contribute globally to the protection of habitats by meeting a target of 30% coverage of PAs with Areas Beyond National Jurisdiction (ABNJ) having the greatest opportunity to do so. While we focus on marine and coastal habitats, our workflow can be extended to terrestrial and freshwater habitats. These indexes are useful to monitor aspects of Sustainable Development Goal 14 and the emerging post-2020 Global Biodiversity Framework, to understand the current status of international cooperation on coastal and marine habitats conservation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Haruka Ohashi ◽  
Tomoko Hasegawa ◽  
Akiko Hirata ◽  
Shinichiro Fujimori ◽  
Kiyoshi Takahashi ◽  
...  

AbstractLimiting the magnitude of climate change via stringent greenhouse gas (GHG) mitigation is necessary to prevent further biodiversity loss. However, some strategies to mitigate GHG emission involve greater land-based mitigation efforts, which may cause biodiversity loss from land-use changes. Here we estimate how climate and land-based mitigation efforts interact with global biodiversity by using an integrated assessment model framework to project potential habitat for five major taxonomic groups. We find that stringent GHG mitigation can generally bring a net benefit to global biodiversity even if land-based mitigation is adopted. This trend is strengthened in the latter half of this century. In contrast, some regions projected to experience much growth in land-based mitigation efforts (i.e., Europe and Oceania) are expected to suffer biodiversity loss. Our results support the enactment of stringent GHG mitigation policies in terms of biodiversity. To conserve local biodiversity, however, these policies must be carefully designed in conjunction with land-use regulations and societal transformation in order to minimize the conversion of natural habitats.


One Earth ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 448-461 ◽  
Author(s):  
Pamela McElwee ◽  
Esther Turnout ◽  
Mireille Chiroleu-Assouline ◽  
Jennifer Clapp ◽  
Cindy Isenhour ◽  
...  

2008 ◽  
Vol 5 (3-4) ◽  
pp. 249-261 ◽  
Author(s):  
Matthias Buck

AbstractThe Ninth Conference of the Parties to the UN Convention on Biological Diversity (COP9) in May 2008 in Bonn was one of the major international environmental meetings in 2008. Its decisions significantly advance global biodiversity politics on a range of critical issues and thereby help achieving the global target of substantially reducing current rates of biodiversity loss by 2010. This article describes the main decision adopted by COP9 on biofuels, marine biodiversity, biodiversity and climate change, access and benefit-sharing and the science-policy interface of international biodiversity politics.


Nature ◽  
2017 ◽  
Vol 551 (7680) ◽  
pp. 364-367 ◽  
Author(s):  
Anthony Waldron ◽  
Daniel C. Miller ◽  
Dave Redding ◽  
Arne Mooers ◽  
Tyler S. Kuhn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document