scholarly journals Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yvonne Oelmann ◽  
Markus Lange ◽  
Sophia Leimer ◽  
Christiane Roscher ◽  
Felipe Aburto ◽  
...  

AbstractExperiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e9616
Author(s):  
Paola Fajardo ◽  
David Beauchesne ◽  
Alberto Carbajal-López ◽  
Rémi M. Daigle ◽  
L. Denisse Fierro-Arcos ◽  
...  

Indigenous Peoples and Local Communities (IPLCs) have inhabited coastal areas, the seas, and remote islands for millennia, and developed place-based traditional ancestral knowledge and diversified livelihoods associated with the biocultural use of marine and coastal ecosystems. Through their cultural traditions, customary wise practices, and holistic approaches to observe, monitor, understand, and appreciate the Natural World, IPLCs have been preserving, managing, and sustainably using seascapes and coastal landscapes, which has been essential for biodiversity conservation. The international community has more than ever recognized the central role of IPLCs in the conservation of biodiversity-rich ecosystems, in particular, for the achievement of the Global Biodiversity Targets determined by the Parties to the United Nations Convention on Biological Diversity to tackle biodiversity loss. However, much remains to be done to fully recognize and protect at national levels IPLCs’ Traditional Biodiversity Knowledge (TBK), ways of life, and their internationally recognized rights to inhabit, own, manage and govern traditional lands, territories, and waters, which are increasingly threatened. At the 2018 4th World Conference on Marine Biodiversity held in Montréal, Canada, eight themed working groups critically discussed progress to date and barriers that have prevented the achievement of the Aichi Biodiversity Targets agreed for the period 2011–2020, and priority actions for the Post-2020 Global Biodiversity Framework. Discussions in the “Application of Biodiversity Knowledge” working group focused on Targets 11 and 18 and the equal valuation of diverse Biodiversity Knowledge Systems (BKS). This Perspective Paper summarizes the 10 Priority Actions identified for a holistic biodiversity conservation, gender equality and human rights-based approach that strengthens the role of IPLCs as biodiversity conservation decision-makers and managers at national and international levels. Furthermore, the Perspective proposes a measurable Target 18 post-2020 and discusses actions to advance the recognition of community-based alternative conservation schemes and TBK to ensure the long-lasting conservation, customary biocultural use, and sustainable multi-functional management of nature around the globe.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501c-501
Author(s):  
Andrés A. Estrada-Luna ◽  
Jonathan N. Egilla ◽  
Fred T. Davies

The effect of mycorrhizal fungi on gas exchange of micropropagated guava plantlets (Psidium guajava L.) during acclimatization and plant establishment was determined. Guava plantlets (Psidium guajava L. cv. `Media China') were asexually propagated through tissue culture and acclimatized in a glasshouse for eighteen weeks. Half of the plantlets were inoculated with ZAC-19, which is a mixed isolate containing Glomus etunicatum and an unknown Glomus spp. Plantlets were fertilized with modified Long Ashton nutrient solution containing 11 (g P/ml. Gas exchange measurements included photosynthetic rate (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and vapor pressure deficit (VPD). Measurements were taken at 2, 4, 8 and 18 weeks after inoculation using a LI-6200 portable photosynthesis system (LI-COR Inc. Lincoln, Neb., USA). Two weeks after inoculation, noninoculated plantlets had greater A compared to mycorrhizal plantlets. However, 4 and 8 weeks after inoculation, mycorrhizal plantlets had greater A, gs, Ci and WUE. At the end of the experiment gas exchange was comparable between noninoculated and mycorrhizal plantlets.


2020 ◽  
Vol 12 (10) ◽  
pp. 4277
Author(s):  
Matthias Winfried Kleespies ◽  
Paul Wilhelm Dierkes

The UN's sustainable development goals (SDGs), which aim to solve important economic, social, and environmental problems of humanity, are to be supported by education for sustainable development (ESD). Empirical studies on the success of the implementation of the SDGs in the field of education are still pending. For this reason, using the loss of global biodiversity as an example, this study examined the extent to which high school students, teacher trainees in biology, and biology bachelor students can identify the causes of the global biodiversity loss. A new questioning tool was developed and tested on 889 participants. In addition, the relationship between connection to nature and the personal assessment about biodiversity threats was examined. The factor analysis of the scale used showed that 11 out of 16 items were assigned to the intended factor. The comparison between high school students, teacher trainees in biology, and biology bachelor students showed no significant difference in overall assessment of the reasons for global biodiversity loss. When comparing the three risk levels in which the risk factors for biodiversity could be divided, across the three student groups, only minor differences were found. Therefore, a specific education of prospective teachers is necessary, as they have to pass on the competence as multipliers to their students. No significant difference could be found when examining the relationship between connection to nature and the overall scores of the assessment scale for the reasons of biodiversity loss. However, it was found that people who felt more connected to nature were more capable of assessing the main causes of risk for global biodiversity, while people who felt less connected to nature achieved better scores for the medium factors.


2021 ◽  
Vol 13 (4) ◽  
pp. 1926 ◽  
Author(s):  
Shiferaw Feleke ◽  
Steven Michael Cole ◽  
Haruna Sekabira ◽  
Rousseau Djouaka ◽  
Victor Manyong

The International Institute of Tropical Agriculture (IITA) has applied the concept of ‘circular bioeconomy’ to design solutions to address the degradation of natural resources, nutrient-depleted farming systems, hunger, and poverty in sub-Saharan Africa (SSA). Over the past decade, IITA has implemented ten circular bioeconomy focused research for development (R4D) interventions in several countries in the region. This article aims to assess the contributions of IITA’s circular bioeconomy focused innovations towards economic, social, and environmental outcomes using the outcome tracking approach, and identify areas for strengthening existing circular bioeconomy R4D interventions using the gap analysis method. Data used for the study came from secondary sources available in the public domain. Results indicate that IITA’s circular bioeconomy interventions led to ten technological innovations (bio-products) that translated into five economic, social, and environmental outcomes, including crop productivity, food security, resource use efficiency, job creation, and reduction in greenhouse gas emissions. Our gap analysis identified eight gaps leading to a portfolio of five actions needed to enhance the role of circular bioeconomy in SSA. The results showcase the utility of integrating a circular bioeconomy approach in R4D work, especially how using such an approach can lead to significant economic, social, and environmental outcomes. The evidence presented can help inform the development of a framework to guide circular bioeconomy R4D at IITA and other research institutes working in SSA. Generating a body of evidence on what works, including the institutional factors that create enabling environments for circular bioeconomy approaches to thrive, is necessary for governments and donors to support circular bioeconomy research that will help solve some of the most pressing challenges in SSA as populations grow and generate more waste, thus exacerbating a changing climate using the linear economy model.


Botany ◽  
2011 ◽  
Vol 89 (12) ◽  
pp. 813-826 ◽  
Author(s):  
M. Fernández-Aparicio ◽  
J.H. Westwood ◽  
D. Rubiales

A number of plant species have adapted to parasitize other plants, and some parasitic species pose severe constraints to major crops. The role of strigolactones and other metabolites present in host root exudates as germination stimulants for weedy root parasitic weed seeds has been known for the last 40 years. Recently, the ecological and developmental roles of strigolactones have been clarified by the discovery that they are a new class of plant hormone that controls shoot branching and serve as host recognition signals for mycorrhizal fungi. Parasitic plants also recognize these chemicals and use them to coordinate their life cycle with that of their host. Here we review agronomic practices that use parasitic germination stimulant production as a target for manipulation to control parasitic weeds.


Sign in / Sign up

Export Citation Format

Share Document