Evaluating a push-pull tactic for management of Epilachna varivestis Mulsant and enhancement of beneficial arthropods in Phaseolus lunatus L.

2020 ◽  
Vol 147 ◽  
pp. 105660
Author(s):  
Alan W. Leslie ◽  
Kelly A. Hamby ◽  
Scott R. McCluen ◽  
Cerruti R.R. Hooks
Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 494f-495 ◽  
Author(s):  
Amy M. Johnson ◽  
Greg D. Hoyt

An experiment was established to determine the effect of different tillage practices, vegetable crop rotations, and pest management strategies on crop yield, plant diseases, pest and beneficial arthropods, weed species changes over time, and soil environmental consequences. This poster describes nitrogen movement from the various treatments over a 3-year rotation. The treatments are: 1) conventional tillage with chemically based IPM; 2) conventional tillage with biologically based IPM; 3) conservation tillage with chemically based IPM; 4) conservation tillage with biologically based IPM; and 5) conventional tillage with no fertilizer or pest management. Mid-season soil analyses with depth showed chemical-fertilized plowed and conservation-tilled treatments with more soil available nitrogen at most depths compared to the biological-based IPM systems (soybean meal was used as a nitrogen source). However, the biological-based systems did supply enough soil nitrogen to produce similar yield results as the chemical-based systems. Less soil nitrate was measured in the 30- to 90-cm depths at harvest from the biological-based systems than chemical-based systems. Conservation-tilled systems had greater nitrate with depth compared to conventional-tilled systems.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 194
Author(s):  
Maria C. Boukouvala ◽  
Nickolas G. Kavallieratos

The larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) is one of the most destructive insect pests of stored maize and dried tubers of cassava, and a wood-boring species. In the present study, we examined two chlorantraniliprole formulations, WG (wettable granule) with 350 g/kg active ingredient (a.i.) and SC (suspension concentrate) with 200 g/L a.i., as maize protectants against P. truncatus adults. Chlorantraniliprole formulations were applied as solutions at 0.01, 0.1, 1 and 10 ppm, and tested at 20, 25 and 30 °C. Both formulations performed similarly. After 7 days of exposure, the overall mortality provided by both formulations was very low (<17%). Seven days later, mortality was remarkably increased on maize treated with 1 and 10 ppm at 25 and 30 °C for both formulations. The highest mortality was noted in chlorantraniliprole WG, at 10 ppm and 30 °C (98.9%), followed by chlorantraniliprole SC (96.1%), at the same dose and temperature. WG formulation was more effective at 10 ppm and 25 °C (92.8%) than SC formulation (89.4%). No progeny production was noted on maize treated with the WG formulation at 20 and 30 °C. The SC formulation caused complete offspring suppression at 10 ppm at all three tested temperatures. The results of the present work indicate that chlorantraniliprole is an effective compound with a high insecticidal activity against T. truncatus on stored maize that depends on temperature, dose and exposure interval. The fact that chlorantraniliprole is a broad-spectrum insecticide, exhibiting low toxicity to mammals and beneficial arthropods, could be a valuable management tool in storage facilities.


2010 ◽  
Vol 11 (1) ◽  
pp. 21 ◽  
Author(s):  
Thomas P. Kuhar ◽  
James F. Walgenbach ◽  
Hélène B. Doughty

Chlorantraniliprole (=Rynaxypyr) is a novel anthranilic diamide insecticide that is of interest to vegetable growers because of its low mammalian toxicity and systemic properties. Field trials were conducted between 2006 and 2008 in North Carolina and Virginia to test the efficacy of chlorantraniliprole as a drip chemigation treatment on tomatoes. Drip chemigation of chlorantraniliprole at various rates and intervals significantly reduced the percentage of tomatoes damaged by tomato fruitworm (Helicoverpa zea) comparable to that typically achieved from multiple foliar applications of insecticides. The best control was achieved with two applications of chlorantraniliprole at 0.074 kg ai/ha, or a single application at 0.099 kg ai/ha. Residual ingestion bioassays showed that chlorantraniliprole was effectively taken up by the roots and was active in leaves up to 66 days after treatment (DAT), active in blossoms up to 22 DAT, but was not active in fruit. Drip chemigation of chlorantraniliprole may offer several advantages over foliar applications, including ease of application, reduced pesticide input into the environment, reduced worker exposure to pesticides, and reduced risk to beneficial arthropods. Accepted for publication 14 January 2010. Published 7 April 2010.


1986 ◽  
Vol 25 (5) ◽  
pp. 1119-1122 ◽  
Author(s):  
Sang-Gu Kim ◽  
Donald J. Armstrong

2010 ◽  
Vol 3 (1) ◽  
pp. 6-19 ◽  
Author(s):  
Mary A. Gardiner ◽  
Julianna K. Tuell ◽  
Rufus Isaacs ◽  
Jason Gibbs ◽  
John S. Ascher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document