scholarly journals Alkaline habitat for vegetated roofs? Ecosystem dynamics in a vegetated roof with crushed concrete-based substrate

2020 ◽  
Vol 157 ◽  
pp. 105970
Author(s):  
Miia Jauni ◽  
Kirsi Kuoppamäki ◽  
Marleena Hagner ◽  
Marju Prass ◽  
Taina Suonio ◽  
...  
2014 ◽  
Vol 641-642 ◽  
pp. 326-331 ◽  
Author(s):  
Marco Carbone ◽  
Francesca Principato ◽  
Gennaro Nigro ◽  
Patrizia Piro

Vegetated roof technique is becoming increasingly popular, particularly in highly urbanized areas, among the Sustainable Urban Drainage Systems (SUDS) for urban stormwater management. Several studies [1,2] have shown that vegetated roofs may significantly reducing the runoff volume and hydrograph peaks, as well as slowing the contribution to the urban drainage network.This study proposes a conceptual model to predict the hydraulic behavior of a full-scale physical model of a vegetated roof. The model idealizes the vegetated roof as a system consisting of three individual components in series. A mass balance equation is applied to each block, taking into account the specific physical phenomena occurring in each module [3]. The model is validated using dataset observed from the monitoring campaign carried out on the prototype of a full-scale vegetated roof.This study aims to provide quantitative information about the hydraulic performance of vegetated roofs, and identify the most sensitive parameters for describing the hydraulic behavior. The results show a good ability of the model to fit the measured data.


2016 ◽  
Author(s):  
Diane M. McKnight ◽  
◽  
Eric Sokol ◽  
Mark Williams ◽  
Katherina Hell ◽  
...  

2016 ◽  
Author(s):  
Hannah L. Kempf ◽  
◽  
Ashley A. Dineen ◽  
Peter D. Roopnarine ◽  
Carrie L. Tyler

2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


2021 ◽  
Vol 13 (15) ◽  
pp. 2882
Author(s):  
Hao Chen ◽  
Shane R. Cloude ◽  
Joanne C. White

In this paper, we consider a new method for forest canopy height estimation using TanDEM-X single-pass radar interferometry. We exploit available information from sample-based, space-borne LiDAR systems, such as the Global Ecosystem Dynamics Investigation (GEDI) sensor, which offers high-resolution vertical profiling of forest canopies. To respond to this, we have developed a new extended Fourier-Legendre series approach for fusing high-resolution (but sparsely spatially sampled) GEDI LiDAR waveforms with TanDEM-X radar interferometric data to improve wide-area and wall-to-wall estimation of forest canopy height. Our key methodological development is a fusion of the standard uniform assumption for the vertical structure function (the SINC function) with LiDAR vertical profiles using a Fourier-Legendre approach, which produces a convergent series of approximations of the LiDAR profiles matched to the interferometric baseline. Our results showed that in our test site, the Petawawa Research Forest, the SINC function is more accurate in areas with shorter canopy heights (<~27 m). In taller forests, the SINC approach underestimates forest canopy height, whereas the Legendre approach avails upon simulated GEDI forest structural vertical profiles to overcome SINC underestimation issues. Overall, the SINC + Legendre approach improved canopy height estimates (RMSE = 1.29 m) compared to the SINC approach (RMSE = 4.1 m).


Author(s):  
Ahmad Alaassar ◽  
Anne-Laure Mention ◽  
Tor Helge Aas

AbstractScholars and practitioners continue to recognize the crucial role of entrepreneurial ecosystems (EEs) in creating a conducive environment for productive entrepreneurship. Although EEs are fundamentally interaction systems of hierarchically independent yet mutually dependent actors, few studies have investigated how interactions among ecosystem actors drive the entrepreneurial process. Seeking to address this gap, this paper explores how ecosystem actor interactions influence new ventures in the financial technology (fintech) EE of Singapore. Guided by an EE framework and the use of an exploratory-abductive approach, empirical data from semi-structured interviews is collected and analyzed. The findings reveal four categories representing both the relational perspective, which features interaction and intermediation dynamics, and the cultural perspective, which encompasses ecosystem development and regulatory dynamics. These categories help explain how and why opportunity identification and resource exploitation are accelerated or inhibited for entrepreneurs in fintech EEs. The present study provides valuable contributions to scholars and practitioners interested in EEs and contributes to the academic understanding of the emerging fintech phenomenon.


Sign in / Sign up

Export Citation Format

Share Document