The Grain for Green Project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China

2012 ◽  
Vol 23 ◽  
pp. 88-94 ◽  
Author(s):  
Decheng Zhou ◽  
Shuqing Zhao ◽  
Chao Zhu
2012 ◽  
Vol 16 (8) ◽  
pp. 2617-2628 ◽  
Author(s):  
X. M. Feng ◽  
G. Sun ◽  
B. J. Fu ◽  
C. H. Su ◽  
Y. Liu ◽  
...  

Abstract. The general relationships between vegetation and water yield under different climatic regimes are well established at a small watershed scale in the past century. However, applications of these basic theories to evaluate the regional effects of land cover change on water resources remain challenging due to the complex interactions of vegetation and climatic variability and hydrologic processes at the large scale. The objective of this study was to explore ways to examine the spatial and temporal effects of a large ecological restoration project on water yield across the Loess Plateau region in northern China. We estimated annual water yield as the difference between precipitation input and modelled actual evapotranspiration (ET) output. We constructed a monthly ET model using published ET data derived from eddy flux measurements and watershed streamflow data. We validated the ET models at a watershed and regional levels. The model was then applied to examine regional water yield under land cover change and climatic variability during the implementation of the Grain-for-Green (GFG) project during 1999–2007. We found that water yield in 38% of the Loess Plateau area might have decreased (1–48 mm per year) as a result of land cover change alone. However, combined with climatic variability, 37% of the study area might have seen a decrease in water yield with a range of 1–54 mm per year, and 35% of the study area might have seen an increase with a range of 1–10 mm per year. Across the study region, climate variability masked or strengthened the water yield response to vegetation restoration. The absolute annual water yield change due to vegetation restoration varied with precipitation regimes with the highest in wet years, but the relative water yield changes were most pronounced in dry years. We concluded that the effects of land cover change associated with ecological restoration varied greatly over time and space and were strongly influenced by climatic variability in the arid region. The current regional vegetation restoration projects have variable effects on local water resources across the region. Land management planning must consider the influences of spatial climate variability and long-term climate change on water yield to be more effective for achieving environmental sustainability.


Author(s):  
Xiaofeng WANG ◽  
Feiyan XIAO ◽  
Xiaoming FENG ◽  
Bojie FU ◽  
Zixiang ZHOU ◽  
...  

ABSTRACTSoil conservation on the Loess Plateau is important not only for local residents but also for reducing sediment downstream in the Yellow River. In this paper, we report a decrease in soil erosion from 2000 to 2010 as a result of the ‘Grain for Green' (GFG) Project. By using the Revised Universal Soil Loss Equation and data on land cover, climate and sediment yield, we found that soil erosion decreased from 6579.55tkm–2yr–1 in 2000 to 1986.66tkm–2yr–1 in 2010. During this period, there was a major land cover change from farmland to grassland in response to the GFG. The area of low vegetation coverage with severe erosion decreased dramatically, whereas the area of high vegetation coverage with slight erosion increased. Our study demonstrates that the reduction in soil erosion on the Loess Plateau contributed to the decrease in the sediment concentration in the Yellow River.


2018 ◽  
Vol 10 (12) ◽  
pp. 2032 ◽  
Author(s):  
Miao Sun ◽  
Qin’ge Dong ◽  
Mengyan Jiao ◽  
Xining Zhao ◽  
Xuerui Gao ◽  
...  

Jointly influenced by natural factors and artificial protection measures in recent years, the vegetation coverage of the Loess Plateau has significantly increased. However, extensive vegetation recovery can result in massive water consumption and a severe soil water deficit, which poses a great threat to the sustainable development of the regional ecological system. Maintaining the balance between precipitation and water consumption is an important foundation of ecological security in the Loess Plateau. Based on this, the present study used the GRACE (Gravity Recovery and Climate Experiment) gravity satellite data to simulate the annual actual water consumption from 2003 to 2014 and to analyze the temporal and spatial evolution of the regional precipitation and the actual evapotranspiration (AET). This study also applied the newly developed rainwater utilization potential index (IRUP) to quantify the sustainability of the water balance in the Loess Plateau. The spatial-temporal patterns of precipitation, potential evapotranspiration, and AET from 2003 to 2014 in the Loess Plateau were all analyzed in this study. Based on the results, the annual average precipitation (AAP) and AET in the entire Loess Plateau had significant increasing trends. The analysis of the spatial distribution reveals that the AET was decreasing from the southeast to the northwest in the Loess Plateau. However, the average values of potential evapotranspiration did not obviously change. Based on the estimated AET result, it was determined that the average IRUP had an increasing trend. The increase in the IRUP is due to an increased rate of precipitation that is statistically higher than that of the AET. Consequently, the Loess Plateau experienced a wetting trend during the period of 2003–2014, especially after the Grain for Green project was implemented. The results in this paper were proven by using three different depths of ERA-Interim (a global atmospheric reanalysis product created by the European Centre for Medium-Range Weather Forecasts) soil water content data from the same period and the observed runoff data from 18 different hydrological sites. Consequently, it seems that the vegetation could maintain a sustainable growth with the implementation of the Grain for Green Project.


Sign in / Sign up

Export Citation Format

Share Document