scholarly journals Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities

2015 ◽  
Vol 55 ◽  
pp. 146-158 ◽  
Author(s):  
Francesc Baró ◽  
Dagmar Haase ◽  
Erik Gómez-Baggethun ◽  
Niki Frantzeskaki
2021 ◽  
Vol 13 (5) ◽  
pp. 2787
Author(s):  
Francesca Vignoli ◽  
Claudia de Luca ◽  
Simona Tondelli

In recent years, both mapping and assessing urban Ecosystem Services (ESs) to support urban planning has been a topic of great debate. This work aims at contributing to this discussion by developing and testing a methodological approach to first assess and map supply and demand of ESs, and then identify areas of priority of intervention. Starting from the existing models, the work develops a tailored approach to map and assess three ESs (water retention and runoff, PM10 removal, and carbon sequestration and storage) that are tested in the city of Bologna and tailored according to available open data. All data are processed in a GIS environment to allow for spatial distribution and visualization of ESs. These maps facilitate defining supply and demands and, consequently, the presence and distribution of ESs deficiencies. Building on mismatches, this paper proposes four clusters by grouping the city’s districts based on predominant land use (built-up, green urban areas) and tree canopy cover. This classification enabled the identification of intervention priority areas and suggestions of relevant nature-based solutions (NBS) to be implemented. The proposed method can serve other urban areas to perform a rapid assessment of their current needs and challenges in terms of ES provision.


Author(s):  
Feiyan Chen ◽  
Ling Li ◽  
Jiqiang Niu ◽  
Aiwen Lin ◽  
Shiyu Chen ◽  
...  

The concept of ecosystem services (ES) supply and demand has attracted increasing attention in science and policy making because it effectively links ecosystem services to human well-being. The imbalance of ES supply and demand in urban areas has become a key issue in regional sustainable development. In this context, we calculated ES supply and demand for Wuhan City, China, using the ES supply and demand ratio (ESDR) and the comprehensive ES supply–demand ratio (CESDR) to express the relationship between ES supply and demand. Ecological zoning was proposed according to the spatial differentiation of the ES supply–demand relationship, and policy recommendations are made. The results show that from the perspective of total ES supply and demand, the water yield supply (SWY), grain yield supply (SGY), and recreation services supply (SRS) are greater than the water yield demand (DWY), grain yield demand (DGY), and recreation services demand (DRS), and that the climate regulation supply (SCR) is less than the climate regulation demand (DCR). From a spatial perspective, there are imbalances and mismatches in ES supply and demand, especially in urban central areas. The values of SWY, SGY, SCS, and SRS per unit area are less than their respective demand values, and the area of mismatch has expanded with the gradual increase of the built-up area. The spatial pattern of ES supply and demand is circular, with the form of “deficit zone–relative equilibrium zone–surplus zone”, which corresponds to “urban central area–near suburbs–distant suburbs and rural areas”.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Romain Goldenberg ◽  
Zahra Kalantari ◽  
Georgia Destouni

AbstractUrban growth alters environmental conditions with major consequences for climate regulation and the exposure of population to heat. Nature-based solutions may be used to alleviate the increasing urban climate pressures, but the climate regulation services that these solutions can supply for and across different urban conditions remains understudied. We comparatively investigate the urban ecosystem service realization (considering the ecosystem service supply and demand spatial interactions) of local climate regulation by vegetated (green) and water-covered (blue) areas across 660 European cities. Results show relatively robust power-law relationships with city population density (average R2 of 0.34) of main indicators of ecosystem service realization. Country-wise fitting for city-average indicators strengthens these relationships, in particular for western European cities (average R2 of 0.66). Cross-city results also show strong power-law relationship of effectiveness in ecosystem service realization with socio-economic measures like Human Development Index and GPD per capita, in particular for the area fraction of city parts with high ecosystem service realization (R2 of 0.77). The quantified relationships are useful for comparative understanding of differences in ecosystem services realization between cities and city parts, and quantitative projection of possible change trends under different types of city growth so that relevant measures can be taken to counteract undesirable trends.


2019 ◽  
Vol 12 (1) ◽  
pp. 295 ◽  
Author(s):  
Bin Fu ◽  
Pei Xu ◽  
Yukuan Wang ◽  
Yingman Guo

Ecological management based on the ecosystem approach promotes ecological protection and the sustainable use of natural resources. We developed a quantitative approach to identify the ecological function zones at the country-scale, through integrating supply and demand of ecosystem services. We selected the biologically diverse hotspot of Baoxing County, which forms a part of the Sichuan Giant Panda World Heritage Site, to explore the integration of ecosystem services supply and demand for ecosystem management. Specifically, we assessed the various support, provision, regulating, and cultural services as classified by the Millennium Ecosystem Assessment. We applied the InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) model to spatially map habitat quality, water retention, and carbon sinks, and used statistical data to evaluate food products, animal husbandry, and product supply services. We then quantified the demands for these services in terms of population, protected species, hydropower, water, and land use. The relationship between areas of supply and areas of demand was discussed for each township, and the spatial variability in the supply–demand relationship was also considered. As a result, we spatially divided the county into six ecological functional areas, and the linkages between each region were comprehensively discussed. This study thus provides a detailed methodology for the successful implementation of an ecosystem management framework on a county-scale based on the spatial partitioning of supply and demand.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 813
Author(s):  
Hui Dang ◽  
Jing Li ◽  
Yumeng Zhang ◽  
Zixiang Zhou

Urban green spaces can provide many types of ecosystem services for residents. An imbalance in the pattern of green spaces leads to an inequality of the benefits of such spaces. Given the current situation of environmental problems and the basic geographical conditions of Xi’an City, this study evaluated and mapped four kinds of ecosystem services from the perspective of equity: biodiversity, carbon sequestration, air purification, and climate regulation. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) was used to obtain the partition groups of ecosystem services. The results indicate that first, the complexity of the urban green space community is low, and the level of biodiversity needs to be improved. The dry deposition flux of particulate matter (PM2.5) decreases from north to south, and green spaces enhance the adsorption of PM2.5. Carbon sequestration in the south and east is higher than that in the north and west, respectively. The average surface temperature in green spaces is lower than that in other urban areas. Second, urban green space resources in the study area are unevenly distributed. Therefore, ecosystem services in different areas are inequitable. Finally, based on the regionalization of integrated ecosystem services, an ecosystem services cluster was developed. This included 913 grid spaces, 12 partitions, and 5 clusters, which can provide a reference for distinct levels of ecosystem services management. This can assist urban managers who can use these indicators of ecosystem service levels for planning and guiding the overall development pattern of green spaces. The benefits would be a maximization of the ecological functions of green spaces, an improvement of the sustainable development of the city, and an improvement of people’s well-being.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 703
Author(s):  
Astrid Vannoppen ◽  
Jeroen Degerickx ◽  
Anne Gobin

Attractive landscapes are diverse and resilient landscapes that provide a multitude of essential ecosystem services. The development of landscape policy to protect and improve landscape attractiveness, thereby ensuring the provision of ecosystem services, is ideally adapted to region specific landscape characteristics. In addition, trends in landscape attractiveness may be linked to certain policies, or the absence of policies over time. A spatial and temporal evaluation of landscape attractiveness is thus desirable for landscape policy development. In this paper, landscape attractiveness was spatially evaluated for Flanders (Belgium) using landscape indicators derived from geospatial data as a case study. Large local differences in landscape quality in (i) rural versus urban areas and (ii) between the seven agricultural regions in Flanders were found. This observed spatial variability in landscape attractiveness demonstrated that a localized approach, considering the geophysical characteristics of each individual region, would be required in the development of landscape policy to improve landscape quality in Flanders. Some trends in landscape attractiveness were related to agriculture in Flanders, e.g., a slight decrease in total agricultural area, decrease in dominance of grassland, maize and cereals, a decrease in crop diversity, sharp increase in the adoption of agri-environmental agreements (AEA) and a decrease in bare soil conditions in winter. The observed trends and spatial variation in landscape attractiveness can be used as a tool to support policy analysis, assess the potential effects of future policy plans, identify policy gaps and evaluate past landscape policy.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 237 ◽  
Author(s):  
Valeria Garbero ◽  
Massimo Milelli ◽  
Edoardo Bucchignani ◽  
Paola Mercogliano ◽  
Mikhail Varentsov ◽  
...  

The increase in built surfaces constitutes the main reason for the formation of the Urban Heat Island (UHI), that is a metropolitan area significantly warmer than its surrounding rural areas. The urban heat islands and other urban-induced climate feedbacks may amplify heat stress and urban flooding under climate change and therefore to predict them correctly has become essential. Currently in the COSMO model, cities are represented by natural land surfaces with an increased surface roughness length and a reduced vegetation cover, but this approach is unable to correctly reproduce the UHI effect. By increasing the model resolution, a representation of the main physical processes that characterize the urban local meteorology should be addressed, in order to better forecast temperature, moisture and precipitation in urban environments. Within the COSMO Consortium a bulk parameterization scheme (TERRA_URB or TU) has been developed. It parametrizes the effects of buildings, streets and other man-made impervious surfaces on energy, moist and momentum exchanges between the surface and atmosphere, and additionally accounts for the anthropogenic heat flux as a heat source from the surface to the atmosphere. TU implements an impervious water-storage parameterization, and the Semi-empirical Urban canopy parametrization (SURY) that translates 3D urban canopy into bulk parameters. This paper presents evaluation results of the TU scheme in high-resolution simulations with a recent COSMO model version for selected European cities, namely Turin, Naples and Moscow. The key conclusion of the work is that the TU scheme in the COSMO model reasonably reproduces UHI effect and improves air temperature forecasts for all the investigated urban areas, despite each city has very different morphological characteristics. Our results highlight potential benefits of a new turbulence scheme and the representation of skin-layer temperature (for vegetation) in the model performance. Our model framework provides perspectives for enhancing urban climate modelling, although further investigations in improving model parametrizations, calibration and the use of more realistic urban canopy parameters are needed.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 582
Author(s):  
Peng Tian ◽  
Jialin Li ◽  
Luodan Cao ◽  
Ruiliang Pu ◽  
Hongbo Gong ◽  
...  

Ecosystem services (ESs) is a term used to describe the foundations of the well-being of human society, and several relevant studies have been carried out in this area. However, given the fact that the complex trade-offs/synergy relationships of ESs are a challenging area, studies on matching mechanisms for ES supply and demand are still rare. In this study, using the InVEST model, ArcGIS, and other professional tools, we first mapped and quantitatively evaluated the supply and demand of five ES types (water yield, soil conservation, carbon retention, food supply, and leisure and entertainment) in Hangzhou, China, based on land use, meteorology, soil, and socio-economic data. Then, we analyzed the matching characteristics between the supply and demand of these ESs and analyzed the complex trade-offs and synergy between the supply and demand of ESs and factors affecting ESs. The results of this analysis indicate that although the ES supply and demand of carbon retention tended to be out of balance (supply was less than demand), the supply and demand of the other four ES types (i.e., water yield, soil conservation, food supply, and leisure and entertainment) were in balance (supply exceeded demand). Finally, the spatial heterogeneity of the supply and demand of ESs in Hangzhou was significant, especially in urban areas in the northeast and mountainous areas in the southwest. The supply of ESs was based on trade-offs, whereas the demand of ESs was based on synergy. Our results further show that the supply and demand of ESs in the urban area in Hangzhou were out of balance, whereas the supply and demand of ESs in the western region were coordinated. Therefore, the linkage of ES flows between this urban area and the western region should be strengthened. This innovative study could provide useful information for regional land use planning and environmental protection.


Sign in / Sign up

Export Citation Format

Share Document