scholarly journals Phosphorus use efficiency in agricultural systems: A comprehensive assessment through the review of national scale substance flow analyses

2021 ◽  
Vol 121 ◽  
pp. 107172
Author(s):  
Rubel Biswas Chowdhury ◽  
Xin Zhang
2019 ◽  
Vol 144 ◽  
pp. 144-157 ◽  
Author(s):  
Shupa Rahman ◽  
Rubel Biswas Chowdhury ◽  
Nidhi Gloria D’Costa ◽  
Nick Milne ◽  
Muhammed Bhuiyan ◽  
...  

2017 ◽  
Author(s):  
Fei Lun ◽  
Junguo Liu ◽  
Philippe Ciais ◽  
Thomas Nesme ◽  
Jinfeng Chang ◽  
...  

Abstract. The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture, and the P fluxes through human and livestock consumers of agricultural products, at global, regional, and national scales from 2002 to 2010. Globally, half of the total P input (21.3 Tg P yr−1) into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010, despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase of soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland, versus increasing P accumulation in Eastern Asia. European and North American pasture had a soil P deficit because continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and recycling of waste P. The trend of increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency aggravating the P stocks scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems is publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.


2018 ◽  
Vol 10 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Fei Lun ◽  
Junguo Liu ◽  
Philippe Ciais ◽  
Thomas Nesme ◽  
Jinfeng Chang ◽  
...  

Abstract. The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.


2016 ◽  
Vol 5 (07) ◽  
pp. 4694 ◽  
Author(s):  
Viliana Vasileva ◽  
Anna Ilieva

In pot trial the biochemical composition and phosphorus use efficiency of birdsfoot trefoil, sainfoin and subterranean clover grown pure and in mixtures with perennial ryegrass in the next ratios were studied in the Institute of Forage Crops, Pleven, Bulgaria: birdsfoot trefoil + perennial ryegrass (50:50%); sainfoin + perennial ryegrass (50:50%); subterranean clover + perennial ryegrass (50:50%); birdsfoot trefoil + subterranean clover + perennial ryegrass (33:33:33%); sainfoin + subterranean clover + perennial ryegrass (33:33:33%). The highest crude protein content was found in the aboveground mass of birdsfoot trefoil (19.17%) and sainfoin (19.30%). The water soluble sugars contents in mixtures was found higher compared to the pure grown legumes. Birdsfoot trefoil showed the highest phosphorus use efficiency for plant biomass accumulation and nodules formation. In mixtures the phosphorus use efficiency was found be higher as compared to the same in pure grown legumes.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Qiuju He ◽  
Fei Wang ◽  
Yan Wang ◽  
Hong Lu ◽  
Zhili Yang ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 2406-2418 ◽  
Author(s):  
Qianbing Zhang ◽  
Junying Liu ◽  
Xuanshuai Liu ◽  
Shengyi Li ◽  
Yanliang Sun ◽  
...  

2018 ◽  
Vol 10 (4) ◽  
pp. 925 ◽  
Author(s):  
Jan Erisman ◽  
Allison Leach ◽  
Albert Bleeker ◽  
Brooke Atwell ◽  
Lia Cattaneo ◽  
...  

Reducing nitrogen pollution across the food chain requires the use of clear and comprehensive indicators to track and manage losses. The challenge is to derive an easy-to-use robust nitrogen use efficiency (NUE) indicator for entire food systems to help support policy development, monitor progress and inform consumers. Based on a comparison of four approaches to NUE (life cycle analysis, nitrogen footprint, nitrogen budget, and environmental impact assessment), we propose an indicator for broader application at the national scale: The whole food chain (NUEFC), which is defined as the ratio of the protein (expressed as nitrogen) available for human consumption to the (newly fixed and imported) nitrogen input to the food system. The NUEFC was calculated for a set of European countries between 1980 and 2011. A large variation in NUEFC was observed within countries in Europe, ranging from 10% in Ireland to 40% in Italy in 2008. The NUEFC can be used to identify factors that influence it (e.g., the share of biological nitrogen fixation (BNF) in new nitrogen, the imported and exported products and the consumption), which can be used to propose potential improvements on the national scale.


Sign in / Sign up

Export Citation Format

Share Document