scholarly journals Are the environmental impacts, resource flows and economic benefits proportional? Analysis of key global trade routes based on the steel life cycle

2021 ◽  
Vol 122 ◽  
pp. 107306
Author(s):  
Yanxin Liu ◽  
Huajiao Li ◽  
Haizhong An ◽  
Jianhe Guan ◽  
Jianglan Shi ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2797
Author(s):  
Shokoofeh Ghasemi ◽  
Mukund P. Sibi ◽  
Chad A. Ulven ◽  
Dean C. Webster ◽  
Ghasideh Pourhashem

Biocomposites can be both environmentally and economically beneficial: during their life cycle they generally use and generate less petroleum-based carbon, and when produced from the byproduct of another industry or recycled back to the manufacturing process, they will bring additional economic benefits through contributing to a circular economy. Here we investigate and compare the environmental performance of a biocomposite composed of a soybean oil-based resin (epoxidized sucrose soyate) and flax-based reinforcement using life cycle assessment (LCA) methodology. We evaluate the main environmental impacts that are generated during the production of the bio-based resin used in the biocomposite, as well as the biocomposite itself. We compare the life cycle impacts of the proposed biocomposite to a functionally similar petroleum-based resin and flax fiber reinforced composite, to identify tradeoffs between the environmental performance of the two products. We demonstrate that the bio-based resin (epoxidized sucrose soyate) compared to a conventional (bisphenol A-based) resin shows lower negative environmental impacts in most studied categories. When comparing the biocomposite to the fossil fuel derived composite, it is demonstrated that using epoxidized sucrose soyate versus a bisphenol A (BPA)-based epoxy resin can improve the environmental performance of the composite in most categories except eutrophication and ozone layer depletion. For future designs, considering an alternative cross-linker to facilitate the bond between the bio-based resin and the flax fiber, may help improve the overall environmental performance of the biocomposite. An uncertainty analysis was also performed to evaluate the effect of variation in LCA model inputs on the environmental results for both the biocomposite and composite. The findings show a better overall carbon footprint for the biocomposite compared to the BPA-based composite at almost all times, demonstrating a good potential for marketability especially in the presence of incentives or regulations that address reducing the carbon intensity of products. This analysis allowed us to pinpoint hotspots in the biocomposite’s supply chain and recommend future modifications to improve the product’s sustainability.


Author(s):  
Martina Caruso ◽  
Rui Pinho ◽  
Federica Bianchi ◽  
Francesco Cavalieri ◽  
Maria Teresa Lemmo

AbstractA life cycle framework for a new integrated classification system for buildings and the identification of renovation strategies that lead to an optimal balance between reduction of seismic vulnerability and increase of energy efficiency, considering both economic losses and environmental impacts, is discussed through a parametric application to an exemplificative case-study building. Such framework accounts for the economic and environmental contributions of initial construction, operational energy consumption, earthquake-induced damage repair activities, retrofitting interventions, and demolition. One-off and annual monetary expenses and environmental impacts through the building life cycle are suggested as meaningful performance metrics to develop an integrated classification system for buildings and to identify the optimal renovation strategy leading to a combined reduction of economic and environmental impacts, depending on the climatic conditions and the seismic hazard at the site of interest. The illustrative application of the framework to an existing school building is then carried out, investigating alternative retrofitting solutions, including either sole structural retrofitting options or sole energy refurbishments, as well as integrated strategies that target both objectives, with a view to demonstrate its practicality and to explore its ensuing results. The influence of seismic hazard and climatic conditions is quantitatively investigated, by assuming the building to be located into different geographic locations.


2021 ◽  
Vol 11 (7) ◽  
pp. 2964
Author(s):  
Gregor Braun ◽  
Claudia Som ◽  
Mélanie Schmutz ◽  
Roland Hischier

The textile industry is recognized as being one of the most polluting industries. Thus, the European Union aims to transform the textile industry with its “European Green Deal” and “Circular Economy Action Plan”. Awareness regarding the environmental impact of textiles is increasing and initiatives are appearing to make more sustainable products with a strong wish to move towards a circular economy. One of these initiatives is wear2wearTM, a collaboration consisting of multiple companies aiming to close the loop for polyester textiles. However, designing a circular product system does not lead automatically to lower environmental impacts. Therefore, a Life Cycle Assessment study has been conducted in order to compare the environmental impacts of a circular with a linear workwear jacket. The results show that a thoughtful “circular economy system” design approach can result in significantly lower environmental impacts than linear product systems. The study illustrates at the same time the necessity for Life Cycle Assessment practitioners to go beyond a simple comparison of one product to another when it comes to circular economy. Such products require a wider system analysis approach that takes into account multiple loops, having interconnected energy and material flows through reuse, remanufacture, and various recycling practices.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kévin Candelier ◽  
Janka Dibdiakova

AbstractThis review compiles various literature studies on the environmental impacts associated with the processes of thermal modification of wood. In wood preservation field, the wood modification by heat is considered as an ecofriendly process due to the absence of any additional chemicals. However, it is challenging to find proper scientific and industrial data that support this aspect. There are still very few complete studies on the life cycle assessment (LCA) and even less studies on the environmental impacts related to wood heat treatment processes whether on a laboratory or on an industrial scales. This comprehensive review on environmental impact assessment emphasizes environmental categories such as dwindling of natural resources, cumulative energy intake, gaseous, solid and liquid emissions occurred by the thermal-treated wood industry. All literature-based data were collected for every single step of the process of wood thermal modification like resources, treatment process, transport and distribution, uses and end of life of treated wood products.


Sign in / Sign up

Export Citation Format

Share Document