scholarly journals How does molecular taxonomy for deriving river health indices correlate with traditional morphological taxonomy?

2021 ◽  
Vol 125 ◽  
pp. 107537
Author(s):  
M.E. Shackleton ◽  
K.A. Dafforn ◽  
N.P. Murphy ◽  
P. Greenfield ◽  
M. Cassidy ◽  
...  
2018 ◽  
Vol 8 (1) ◽  
pp. 222-232 ◽  
Author(s):  
R. V. Yakovlev ◽  
N. A. Shapoval ◽  
G. N. Kuftina ◽  
A. V. Kulak ◽  
S. V. Kovalev

The Proclossiana eunomia (Esper, 1799) complex is currently composed of the several subspecies distributed throughout Palaearсtic region and North America. Despite the fact that some of the taxa have differences in wing pattern and body size, previous assumptions on taxonomy not supported by molecular data. Therefore, the identity of certain populations of this complex has remained unclear and the taxonomic status of several recently described taxa is debated. Here, we provide insights into systematics of some Palaearctic members of this group using molecular approach, based on the analysis of the barcoding fragment of the COI gene taking into account known morphological differences.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 866 ◽  
Author(s):  
Marzena Rachwał ◽  
Małgorzata Wawer ◽  
Mariola Jabłońska ◽  
Wioletta Rogula-Kozłowska ◽  
Patrycja Rogula-Kopiec

The main objective of this research was the determination of the geochemical and mineralogical properties of particulate matter: TSP (total suspended particles) and, especially PM1 (particles with aerodynamic diameter not greater than 1 µm) suspended in the air of a selected urban area in southern Poland. Identification of the emission sources of metals and metalloids bound in TSP and PM1 as well as the assessment of potential risk of urban ambient air to human health using hazard indices was an additional aim of this investigation. The daily TSP and PM1 quartz fiber filters collected during heating season were subjected to mass magnetic susceptibility (χ) measurements, SEM (Scanning Electron Microscopy) observations and geochemical analyses. Obtained results revealed that the concentration of TSP and PM1 well correlated with their mass-specific magnetic susceptibility. The good relationship between the PM concentration and χ suggests that magnetic susceptibility measurements can be a good proxy of low-level atmospheric dust pollution. The rank order of potentially toxic elements (PTE) based on average concentration was Ba > Zn > Al > Fe > Pb > Mn > Ti > Cu > Cr > Ni >As > Cd > V > Tl, both for TSP and PM1. PM1/TSP ratios for PTE concentrations and χ were around or slightly above unity, which indicated that PM1 was the main carrier of PTE (with the exception of cadmium, copper and lead) and technogenic magnetic particles. The non-carcinogenic and carcinogenic risks were confirmed by very high values of human health indices.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Yanyong Cheng ◽  
Shihao Wu ◽  
Yufeng Lu ◽  
Zhenyu Xue ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 129
Author(s):  
María Capa ◽  
Pat Hutchings

Annelida is a ubiquitous, common and diverse group of organisms, found in terrestrial, fresh waters and marine environments. Despite the large efforts put into resolving the evolutionary relationships of these and other Lophotrochozoa, and the delineation of the basal nodes within the group, these are still unanswered. Annelida holds an enormous diversity of forms and biological strategies alongside a large number of species, following Arthropoda, Mollusca, Vertebrata and perhaps Platyhelminthes, among the species most rich in phyla within Metazoa. The number of currently accepted annelid species changes rapidly when taxonomic groups are revised due to synonymies and descriptions of a new species. The group is also experiencing a recent increase in species numbers as a consequence of the use of molecular taxonomy methods, which allows the delineation of the entities within species complexes. This review aims at succinctly reviewing the state-of-the-art of annelid diversity and summarizing the main systematic revisions carried out in the group. Moreover, it should be considered as the introduction to the papers that form this Special Issue on Systematics and Biodiversity of Annelids.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 749
Author(s):  
Yuan Gao ◽  
Zini Lai ◽  
Chao Wang ◽  
Haiyan Li ◽  
Yongzhan Mai

Water pollution can be monitored through the use of indicator species, including Brachionus calyciflorus. To do this, it is necessary to understand the species’ population ecology. Four surveys of zooplankton were conducted in May, August, and December 2018 and February 2019 in the Pearl River Delta, China, to examine the population characteristics of B. calyciflorus. The temporal and spatial distribution of abundance, biomass, dominance, and occurrence frequency were compared with those from 2012 to investigate the relationship between changes in the population of B. calyciflorus and environmental factors. The average abundance, dominance, and occurrence of B. calyciflorus in this survey were significantly higher than those of 2012 in all seasons. Principal component analysis showed that environmental factors such as the temperature, transparency, total nitrogen, and total phosphorus of water had a major impact on the abundance of B. calyciflorus. There was a significant positive correlation with transparency, total nitrogen, and total phosphorus of water, and a very significant positive correlation with water temperature. Overall, these results demonstrated that the distribution characteristics of B. calyciflorus can reflect pollution in water bodies and can be used to evaluate water quality. These research results provide a reference for evaluating China’s river health and can help to manage water quality in the Pearl River Delta.


Sign in / Sign up

Export Citation Format

Share Document