scholarly journals Bacterial diversity and community structure along the glacier foreland of Midtre Lovénbreen, Svalbard, Arctic

2021 ◽  
Vol 126 ◽  
pp. 107704
Author(s):  
Siddarthan Venkatachalam ◽  
Vatharamattathil Mohanan Kannan ◽  
Vadakke Neelamanakesavan Saritha ◽  
Dinesh Sanka Loganathachetti ◽  
Mahesh Mohan ◽  
...  
2020 ◽  
Vol 10 (17) ◽  
pp. 5850
Author(s):  
Jiaojiao Ma ◽  
Ting Zhou ◽  
Chunyu Xu ◽  
Dawen Shen ◽  
Songjun Xu ◽  
...  

Field and laboratory investigations were conducted to characterize bacterial diversity and community structure in a badly contaminated mangrove wetland adjacent to the metropolitan area of a megacity in subtropical China. Next-generation sequencing technique was used for sequencing the V4–V5 region of the 16s rRNA gene on the Illumina system. Collectively, Proteobacteria, Chloroflexi, Planctomycetes, Actinobacteria and Bacteroidetes were the predominant phyla identified in the investigated soils. A significant spatial variation in bacterial diversity and community structure was observed for the investigated mangrove soils. Heavy metal pollution played a key role in reducing the bacterial diversity. The spatial variation in soil-borne heavy metals shaped the spatial variation in bacterial diversity and community structure in the study area. Other environmental factors such as total carbon and total nitrogen in the soils that are affected by seasonal change in temperature could also influence the bacterial abundance, diversity and community structure though the temporal variation was relatively weaker, as compared to spatial variation. The bacterial diversity index was lower in the investigated site than in the comparable reference site with less contaminated status. The community structure in mangrove soils at the current study site was, to a remarkable extent, different from those in the tropical mangrove wetlands around the world.


2018 ◽  
Vol 16 (6) ◽  
pp. 914-920 ◽  
Author(s):  
Qing Wu ◽  
Shuqun Li ◽  
Xiaofei Zhao ◽  
Xinhua Zhao

Abstract The abuse of antibiotics is becoming more serious as antibiotic use has increased. The sulfa antibiotics, sulfamerazine (SM1) and sulfamethoxazole (SMZ), are frequently detected in a wide range of environments. The interaction between SM1/SMZ and bacterial diversity in drinking water was investigated in this study. The results showed that after treatment with SM1 or SMZ at four different concentrations, the microbial community structure of the drinking water changed statistically significantly compared to the blank sample. At the genus level, the proportions of the different bacteria in drinking water may affect the degradation of the SM1/SMZ. The growth of bacteria in drinking water can be inhibited after the addition of SM1/SMZ, and bacterial community diversity in drinking water declined in this study. Furthermore, the resistance gene sul2 was induced by SM1 in the drinking water.


Author(s):  
Tiehang Wu ◽  
Michael Sabula ◽  
Holli Milner ◽  
Gary Strickland ◽  
Gan Liu

Soil microbial diversity and community are determined by anthropogenic activities and environmental conditions, which greatly affect the functioning of ecosystem. We investigated the soil bacterial diversity, communities, and nitrogen (N) functional genes with different disturbance intensity levels from crop, transition, to forest soils at three locations in the coastal region of Georgia, USA. Illumina high-throughput DNA sequencing based on bacterial 16S rRNA genes were performed for bacterial diversity and community analyses. Nitrifying (AOB amoA) and denitrifying (nirK) functional genes were further detected using quantitative PCR (qPCR) and Denaturing Gradient Gel Electrophoresis (DGGE). Soil bacterial community structure determined by Illumina sequences were significantly different between crop and forest soils (p < 0.01), as well as between crop and transition soils (p = 0.01). However, there is no difference between transition and forest soils. Compared to less disturbed forest, agricultural practice significantly decreased soil bacterial richness and Shannon diversity. Soil pH and nitrate contents together contributed highest for the observed different bacterial communities (Correlations = 0.381). Two OTUs (OTU5, OTU8) belonging to Acidobacteriales species decreased in crop soils, however, agricultural practices significantly increased an OTU (OTU4) of Nitrobacteraceae. The relative abundance of AOB amoA gene was significantly higher in crop soils than in forest and transition soils. Distinct grouping of soil denitrifying bacterial nirK communities was observed and agricultural practices significantly decreased the diversity of nirK gene compared to forest soils. Anthropogenic effects through agricultural practices negatively affecting the soil bacterial diversity, community structure, and N functional genes.


2004 ◽  
Vol 49 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Julia R. Lipthay ◽  
Kaare Johnsen ◽  
Hans-Jørgen Albrechtsen ◽  
Per Rosenberg ◽  
Jens Aamand

2014 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
Hui Sun ◽  
Eeva Terhonen ◽  
Kaisa Koskinen ◽  
Lars Paulin ◽  
Risto Kasanen ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0155055 ◽  
Author(s):  
Ngoc-Lan Nguyen ◽  
Yeon-Ju Kim ◽  
Van-An Hoang ◽  
Sathiyamoorthy Subramaniyam ◽  
Jong-Pyo Kang ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiuling Wang ◽  
Zhongke Wang ◽  
Ping Jiang ◽  
Yaling He ◽  
Yudi Mu ◽  
...  

2005 ◽  
Vol 7 (8) ◽  
pp. 1192-1199 ◽  
Author(s):  
Anne Fahy ◽  
Gordon Lethbridge ◽  
Richard Earle ◽  
Andrew S. Ball ◽  
Kenneth N. Timmis ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiaxin Wang ◽  
Xuening Lu ◽  
Jiaen Zhang ◽  
Guangchang Wei ◽  
Yue Xiong

Abstract It has been shown that the golden apple snail (GAS, Pomacea canaliculata), which is a serious agricultural pest in Southeast Asia, can provide a soil amendment for the reversal of soil acidification and degradation. However, the impact of GAS residue (i.e., crushed, whole GAS) on soil bacterial diversity and community structure remains largely unknown. Here, a greenhouse pot experiment was conducted and 16S rRNA gene sequencing was used to measure bacterial abundance and community structure in soils amended with GAS residue and lime. The results suggest that adding GAS residue resulted in a significant variation in soil pH and nutrients (all P < 0.05), and resulted in a slightly alkaline (pH = 7.28–7.75) and nutrient-enriched soil, with amendment of 2.5–100 g kg−1 GAS residue. Soil nutrients (i.e., NO3-N and TN) and TOC contents were increased (by 132–912%), and some soil exocellular enzyme activities were enhanced (by 2–98%) in GAS residue amended soil, with amendment of 1.0–100 g kg−1 GAS residue. Bacterial OTU richness was 19% greater at the 2.5 g kg−1 GAS residue treatment than the control, while it was 40% and 53% lower at 100 g kg−1 of GAS residue and 50 g kg−1 of lime amended soils, respectively. Firmicutes (15–35%) was the most abundant phylum while Bacterioidetes (1–6%) was the lowest abundant one in GAS residue amended soils. RDA results suggest that the contents of soil nutrients (i.e., NO3-N and TN) and soil TOC explained much more of the variations of bacterial community than pH in GAS residue amended soil. Overuse of GAS residue would induce an anaerobic soil environment and reduce bacterial OTU richness. Soil nutrients and TOC rather than pH might be the main factors that are responsible for the changes of bacterial OTU richness and bacterial community structure in GAS residue amended soil.


Sign in / Sign up

Export Citation Format

Share Document