scholarly journals Interaction between typical sulfonamides and bacterial diversity in drinking water

2018 ◽  
Vol 16 (6) ◽  
pp. 914-920 ◽  
Author(s):  
Qing Wu ◽  
Shuqun Li ◽  
Xiaofei Zhao ◽  
Xinhua Zhao

Abstract The abuse of antibiotics is becoming more serious as antibiotic use has increased. The sulfa antibiotics, sulfamerazine (SM1) and sulfamethoxazole (SMZ), are frequently detected in a wide range of environments. The interaction between SM1/SMZ and bacterial diversity in drinking water was investigated in this study. The results showed that after treatment with SM1 or SMZ at four different concentrations, the microbial community structure of the drinking water changed statistically significantly compared to the blank sample. At the genus level, the proportions of the different bacteria in drinking water may affect the degradation of the SM1/SMZ. The growth of bacteria in drinking water can be inhibited after the addition of SM1/SMZ, and bacterial community diversity in drinking water declined in this study. Furthermore, the resistance gene sul2 was induced by SM1 in the drinking water.

2013 ◽  
Vol 726-731 ◽  
pp. 1621-1627 ◽  
Author(s):  
Zhu Chen ◽  
Ying Liu ◽  
Liang Zi Liu ◽  
Xiao Jing Wang ◽  
Zhi Pei Liu ◽  
...  

The success of a recirculating aquaculture system (RAS) greatly depends on the structure, dynamics and activities of microbial community. Heterotrophic bacteria as the major members play various roles. The heterotrophic bacterial community structure in threestaged biofilters was studied using four different media. 228 isolates belonging to 77species were obtained and affiliated toGammaproteobacteria,Alphaproteobacteria,Bacteroidetes,Firmicutes,ActinobacteriaandBetaproteobacteria.Gammaproteobacteriawas the predominant group. The concurrence was found between potential pathogens (VibrioandShewanella) and probiotics (BacillusandPseudomonas). On the basis of community diversity index, we could infer that differences existed between stages, and the diversity index increased along the biofilters. A comprehensive understanding of microbial community in RAS will be in favor of utilization of microbial resources and optimizing the culture systems' operation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Huirong Lin ◽  
Shuting Zhang ◽  
Song Gong ◽  
Shenghua Zhang ◽  
Xin Yu

The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins,α-polysaccharides, andβ-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence.


2008 ◽  
Vol 74 (10) ◽  
pp. 3014-3021 ◽  
Author(s):  
Robert H. Findlay ◽  
Christine Yeates ◽  
Meredith A. J. Hullar ◽  
David A. Stahl ◽  
Louis A. Kaplan

ABSTRACT A field study was conducted to determine the microbial community structures of streambed sediments across diverse geographic and climatic areas. Sediment samples were collected from three adjacent headwater forest streams within three biomes, eastern deciduous (Pennsylvania), southeastern coniferous (New Jersey), and tropical evergreen (Guanacaste, Costa Rica), to assess whether there is biome control of stream microbial community structure. Bacterial abundance, microbial biomass, and bacterial and microbial community structures were determined using classical, biochemical, and molecular methods. Microbial biomass, determined using phospholipid phosphate, was significantly greater in the southeastern coniferous biome, likely due to the smaller grain size, higher organic content, and lower levels of physical disturbance of these sediments. Microbial community structure was determined using phospholipid fatty acid (PLFA) profiles and bacterial community structure from terminal restriction fragment length polymorphism and edited (microeukaryotic PLFAs removed) PLFA profiles. Principal component analysis (PCA) was used to investigate patterns in total microbial community structure. The first principal component separated streams based on the importance of phototrophic microeukaryotes within the community, while the second separated southeastern coniferous streams from all others based on increased abundance of fungal PLFAs. PCA also indicated that within- and among-stream variations were small for tropical evergreen streams and large for southeastern coniferous streams. A similar analysis of bacterial community structure indicated that streams within biomes had similar community structures, while each biome possessed a unique streambed community, indicating strong within-biome control of stream bacterial community structure.


2014 ◽  
Vol 22 (1) ◽  
pp. 546-554 ◽  
Author(s):  
Xiaobin Liao ◽  
Chao Chen ◽  
Jingxu Zhang ◽  
Yu Dai ◽  
Xiaojian Zhang ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Rebecca J. Stevick ◽  
Anton F. Post ◽  
Marta Gómez-Chiarri

Abstract Background Oysters in coastal environments are subject to fluctuating environmental conditions that may impact the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services, particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome composition are well-known, but functional changes and how they may impact host physiology and ecosystem functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient gradient in August 2017. Samples were analyzed by 16S rRNA gene sequencing to characterize bacterial community structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments. Results There were significant differences in bacterial community structure between the eastern oyster gut and water samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing environmental conditions. Conclusions The observed shifts in microbial community composition and function inform how estuarine conditions affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine relationships between host health, microbial community structure, and environmental conditions in benthic communities.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Peter Rubbens ◽  
Ruben Props ◽  
Frederiek-Maarten Kerckhof ◽  
Nico Boon ◽  
Willem Waegeman

ABSTRACT Microbial flow cytometry can rapidly characterize the status of microbial communities. Upon measurement, large amounts of quantitative single-cell data are generated, which need to be analyzed appropriately. Cytometric fingerprinting approaches are often used for this purpose. Traditional approaches either require a manual annotation of regions of interest, do not fully consider the multivariate characteristics of the data, or result in many community-describing variables. To address these shortcomings, we propose an automated model-based fingerprinting approach based on Gaussian mixture models, which we call PhenoGMM. The method successfully quantifies changes in microbial community structure based on flow cytometry data, which can be expressed in terms of cytometric diversity. We evaluate the performance of PhenoGMM using data sets from both synthetic and natural ecosystems and compare the method with a generic binning fingerprinting approach. PhenoGMM supports the rapid and quantitative screening of microbial community structure and dynamics. IMPORTANCE Microorganisms are vital components in various ecosystems on Earth. In order to investigate the microbial diversity, researchers have largely relied on the analysis of 16S rRNA gene sequences from DNA. Flow cytometry has been proposed as an alternative technology to characterize microbial community diversity and dynamics. The technology enables a fast measurement of optical properties of individual cells. So-called fingerprinting techniques are needed in order to describe microbial community diversity and dynamics based on flow cytometry data. In this work, we propose a more advanced fingerprinting strategy based on Gaussian mixture models. We evaluated our workflow on data sets from both synthetic and natural ecosystems, illustrating its general applicability for the analysis of microbial flow cytometry data. PhenoGMM supports a rapid and quantitative analysis of microbial community structure using flow cytometry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chiqian Zhang ◽  
Ke Qin ◽  
Ian Struewing ◽  
Helen Buse ◽  
Jorge Santo Domingo ◽  
...  

Microbial drinking water quality in premise plumbing systems (PPSs) strongly affects public health. Bacterial community structure is the essential aspect of microbial water quality. Studies have elucidated the microbial community structure in cold tap water, while the microbial community structures in hot tap and shower water are poorly understood. We sampled cold tap, hot tap, and shower water from a simulated PPS monthly for 16 consecutive months and assessed the bacterial community structures in those samples via high-throughput sequencing of bacterial 16S rRNA genes. The total relative abundance of the top five most abundant phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes) was greater than 90% among the 24 identified phyla. The most abundant families were Burkholderiaceae, Sphingomonadaceae, unclassified Alphaproteobacteria, unclassified Corynebacteriales, and Mycobacteriaceae. A multiple linear regression suggests that the bacterial community diversity increased with water temperature and the age of the simulated PPS, decreased with total chlorine residual concentration, and had a limited seasonal variation. The bacterial community in hot tap water had significantly lower Shannon and Inverse Simpson diversity indices (p < 0.05) and thus a much lower diversity than those in cold tap and shower water. The paradoxical results (i.e., diversity increased with water temperature, but hot tap water bacterial community was less diverse) were presumably because (1) other environmental factors made hot tap water bacterial community less diverse, (2) the diversity of bacterial communities in all types of water samples increased with water temperature, and (3) the first draw samples of hot tap water could have a comparable or even lower temperature than shower water samples and the second draw samples of cold tap water. In both a three-dimensional Non-metric multidimensional scaling ordination plot and a phylogenetic dendrogram, the samples of cold tap and shower water cluster and are separate from hot tap water samples (p < 0.05). In summary, the bacterial community in hot tap water in the simulated PPS had a distinct structure from and a much lower diversity than those in cold tap and shower water.


Sign in / Sign up

Export Citation Format

Share Document