Isotopic signatures of organic matter in sediments of the continental shelf facing the Orinoco Delta: Possible contribution of organic carbon from savannas

2005 ◽  
Vol 63 (4) ◽  
pp. 527-536 ◽  
Author(s):  
Ernesto Medina ◽  
Marta Francisco ◽  
Leonel Sternberg ◽  
William T. Anderson
Author(s):  
Antonella Di Leo ◽  
Santina Giandomenico ◽  
Lucia Spada ◽  
Nicola Cardellicchio ◽  
Francesco Paolo Buonocunto ◽  
...  

The goal of this work has been to establish the influence of the Sarno river on the present sedimentation in the Naples bay continental shelf by evaluating organic matter contribution and pollution. Sediments samples were collected, by van Veen grab, in 71 stations located offshore the Sarno river between Vesuvian and Sorrento Peninsula coasts. The characteristics of the surface sediments were analysed to highlight spatial trends in the (i) granulometry (grain-size); (ii) total nitrogen, organic carbon and total phosphorus; (iii) metal content (Hg, Cd, Pb, As, Cr, Cu, Ni, Zn, Fe and Mn).


1978 ◽  
Vol 42 (322) ◽  
pp. 221-228 ◽  
Author(s):  
J. M. McArthur

SummaryPhosphorites from the continental shelf off Morocco have been analysed for major elements and Fe, Mn, V, Cu, Ni, Zn, As, Na, Sr, S, and for carbonate. In pyritic phosphorites Cu, Ni, Zn, and As are present mainly in minor pyrite and organic carbon. In ferruginous phosphorites As, Mn, and V are associated with goethite. In the ferruginous phosphorites Cu, Ni, and Zn may have been introduced in association with organic matter and pyrite during phosphorite formation and been retained during subsequent destruction of these phases by weathering. In all phosphorites Na and Sr are present mainly in carbonate-fluorapatite. Sulphur in the ferru-ginous phosphorites occurs only in carbonate-fluorapatite. In the pyritic samples it is partitioned between pyrite and francolite (carbonate-fluorapatite).


2008 ◽  
Vol 111 (3-4) ◽  
pp. 137-150 ◽  
Author(s):  
V. Ramaswamy ◽  
Birgit Gaye ◽  
P.V. Shirodkar ◽  
P.S. Rao ◽  
Allan R. Chivas ◽  
...  

2011 ◽  
Vol 8 (11) ◽  
pp. 3441-3456 ◽  
Author(s):  
M. V. Maya ◽  
S. G. Karapurkar ◽  
H. Naik ◽  
R. Roy ◽  
D. M. Shenoy ◽  
...  

Abstract. Intra-annual variations of δ13C and δ15N of water-column suspended particulate organic matter (SPOM) have been investigated to understand the biogeochemical cycling of C and N in the Western Continental Shelf of India (WCSI). The key issues being addressed are: how the δ15N of SPOM is affected by seasonally varying processes of organic matter production and respiration and how it relates to the δ15N of sedimentary organic matter that appears to show a decreasing trend despite an apparent intensification of seasonal oxygen deficiency over the past few decades? A secondary objective was to evaluate the sources of organic carbon. Elemental carbon and nitrogen concentrations, C/N ratios in SPOM, along with ancillary chemical and biological variables including phytoplankton pigment abundance were also determined on a seasonal basis (from March 2007 to September 2008), with the partial exception of the southwest (SW) monsoon period. The results reveal significant shifts in isotopic signatures, especially δ15N, of SPOM before and after the onset of SW monsoon. Very low δ15N values, reaching a minimum of −4.17 ‰, are found during the pre-monsoon period. Our results provide the first direct evidence for the addition of substantial amounts of isotopically light nitrogen by the diazotrophs, especially Trichodesmium, in the region. The δ15N of SPOM is generally lower than the mean value (7.38 ‰) for surficial sediments, presumably because of diagenetic enrichment. The results support the view that sedimentary δ15N may not necessarily reflect denitrification intensity in the overlying waters due to diverse sources of nitrogen and variability of its isotopic composition. The observed intra-annual variability of δ13C of SPOM during the pre-monsoon and post-monsoon periods is generally small. Phytoplankton production and probably species composition could drive some of the observed changes. The largest changes (depletion of δ13C and increase in C/N) appear to occur during the pre- and post-monsoon seasons, presumably through episodic deposition of terrestrial organic matter from the atmosphere. During the SW monsoon, when a large input of terrestrial organic matter is expected through runoff from land, the C/N ratio remains low, but significant difference is observed between δ13C data in 2007 and 2008. Inputs of soil organic matter that may have elemental and isotopic signatures different from those of the conventional (C3 plant derived) organic matter could explain the constancy of the C/N ratio.


2011 ◽  
Vol 8 (10) ◽  
pp. 2895-2906 ◽  
Author(s):  
Z. E. Kayler ◽  
M. Kaiser ◽  
A. Gessler ◽  
R. H. Ellerbrock ◽  
M. Sommer

Abstract. Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM) fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM occluded in micro-structures found in the chemical extraction residue (OM(ER)). Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY)-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY) through Ca2+ interactions. In general, we found the forest soils to contain on average 10% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY) and the ratio of soil organic carbon content to soil surface area (SOC/SSA). This indicates that the OM(PY) fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition of the OM(ER) fraction, we conclude that the OM in this fraction from both land use types have undergone a different pathway to stabilization that does not involve microbial processing, which may include OM which is highly protected within soil micro-structures.


2019 ◽  
Author(s):  
Sabina Yeasmin ◽  
Balwant Singh ◽  
Cliff T. Johnston ◽  
Donald L. Sparks ◽  
Quan Hua

Abstract. Soil organic carbon (OC) is the largest terrestrial C stock and soils' capacity to preserve OC varies with many factors including land use, soil type and depth. We investigated the effect of land use change on particulate organic matter (POM) and mineral-associated organic matter (MOM) in soils. Surface (0–10 cm) and sub-surface (60–70 cm) soil samples were collected from paired-sites (native and cropped lands) of four contrasting soils. Bulk soils were isolated into POM and MOM fractions, which were analysed for mineralogy, OC and nitrogen, isotopic signatures and 14C content. POMs of surface soils were relatively unaffected by land use change, possibly because of continuous input of crop residues, while corresponding POM in sub-surface lost more OC. In surface soils, oxides-dominated MOM lost more OC than phyllosilicates- and quartz -dominated MOM, which is attributed to diverse OM input and the extent of OC saturation limit of soils. In contrast, oxides-associated fractions were less affected in the sub-surface soils than the other two MOM fractions, possibly due to OC protection via organo–mineral associations. Changed isotopic signature (linked with vegetation) across the fractions suggested that fresh crop residues constituted the bulk of OM in surface soils (supported by greater 14C). Increased isotopic signatures and lower 14C in sub-surface MOM fractions suggested the association of more microbially processed, aged OC in oxides-rich fractions than other MOMs. Results reveal that quantity and quality of OC after land use change was influenced by the nature of C input in surface soils and by mineral-organic association in sub-surface soils.


Author(s):  
Donald Eugene Canfield

This chapter considers the aftermath of the great oxidation event (GOE). It suggests that there was a substantial rise in oxygen defining the GOE, which may, in turn have led to the Lomagundi isotope excursion, which was associated with high rates of organic matter burial and perhaps even higher concentrations of oxygen. This excursion was soon followed by a crash in oxygen to very low levels and a return to banded iron formation deposition. When the massive amounts of organic carbon buried during the excursion were brought into the weathering environment, they would have represented a huge oxygen sink, drawing down levels of atmospheric oxygen. There appeared to be a veritable seesaw in oxygen concentrations, apparently triggered initially by the GOE. The GOE did not produce enough oxygen to oxygenate the oceans. Dissolved iron was removed from the oceans not by reaction with oxygen but rather by reaction with sulfide. Thus, the deep oceans remained anoxic and became rich in sulfide, instead of becoming well oxygenated.


Author(s):  
Jeonghyun Kim ◽  
Yeseul Kim ◽  
Sung Eun Park ◽  
Tae-Hoon Kim ◽  
Bong-Guk Kim ◽  
...  

AbstractIn Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.


2021 ◽  
Author(s):  
Marttiina V. Rantala ◽  
Carsten Meyer-Jacob ◽  
E. Henriikka Kivilä ◽  
Tomi P. Luoto ◽  
Antti. E. K. Ojala ◽  
...  

AbstractGlobal environmental change alters the production, terrestrial export, and photodegradation of organic carbon in northern lakes. Sedimentary biogeochemical records can provide a unique means to understand the nature of these changes over long time scales, where observational data fall short. We deployed in situ experiments on two shallow subarctic lakes with contrasting light regimes; a clear tundra lake and a dark woodland lake, to first investigate the photochemical transformation of carbon and nitrogen elemental (C/N ratio) and isotope (δ13C, δ15N) composition in lake water particulate organic matter (POM) for downcore inferences. We then explored elemental, isotopic, and spectral (inferred lake water total organic carbon [TOC] and sediment chlorophyll a [CHLa]) fingerprints in the lake sediments to trace changes in aquatic production, terrestrial inputs and photodegradation before and after profound human impacts on the global carbon cycle prompted by industrialization. POM pool in both lakes displayed tentative evidence of UV photoreactivity, reflected as increasing δ13C and decreasing C/N values. Through time, the tundra lake sediments traced subtle shifts in primary production, while the woodland lake carried signals of changing terrestrial contributions, indicating shifts in terrestrial carbon export but possibly also photodegradation rates. Under global human impact, both lakes irrespective of their distinct carbon regimes displayed evidence of increased productivity but no conspicuous signs of increased terrestrial influence. Overall, sediment biogeochemistry can integrate a wealth of information on carbon regulation in northern lakes, while our results also point to the importance of considering the entire spectrum of photobiogeochemical fingerprints in sedimentary studies.


Sign in / Sign up

Export Citation Format

Share Document