Autochthonous organic matter promotes DNRA and suppresses N2O production in sediments of the coastal Baltic Sea

Author(s):  
Sanni L. Aalto ◽  
Eero Asmala ◽  
Tom Jilbert ◽  
Susanna Hietanen
2016 ◽  
Vol 13 (9) ◽  
pp. 2815-2821 ◽  
Author(s):  
Federico Baltar ◽  
Catherine Legrand ◽  
Jarone Pinhassi

Abstract. Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and  <  40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.


2008 ◽  
Vol 65 (3) ◽  
pp. 264-281 ◽  
Author(s):  
Maria H. Thorsson ◽  
Jenny E. Hedman ◽  
Clare Bradshaw ◽  
Jonas S. Gunnarsson ◽  
Michael Gilek

2006 ◽  
Vol 51 (5) ◽  
pp. 2300-2307 ◽  
Author(s):  
Pirjo Kuuppo ◽  
Pauliina Uronen ◽  
Anika Petermann ◽  
Timo Tamminen ◽  
Edna Granéli

2014 ◽  
Vol 132 ◽  
pp. 106-115 ◽  
Author(s):  
Karol Kuliński ◽  
Bernd Schneider ◽  
Karoline Hammer ◽  
Ulrike Machulik ◽  
Detlef Schulz-Bull

2012 ◽  
Vol 9 (5) ◽  
pp. 1915-1933 ◽  
Author(s):  
J. M. Mogollón ◽  
A. W. Dale ◽  
H. Fossing ◽  
P. Regnier

Abstract. Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form.


2017 ◽  
Author(s):  
Violetta Drozdowska ◽  
Iwona Wróbel ◽  
Piotr Markuszewski ◽  
Przemyslaw Makuch ◽  
Anna Raczkowska ◽  
...  

Abstract. The fluorescence and absorption measurements of the samples collected from a surface microlayer (SML) and a subsurface layer (SS), a depth of 1 m were studied during three research cruises in the Baltic Sea along with hydrophysical studies and meteorological observations. Several absorption (E2 : E3, S, SR) and fluorescence (fluorescence intensities at peaks: A, C, M, T, the ratio (M + T) / (A + C), HIX) indices of colored and fluorescent organic matter (CDOM and FDOM) helped to describe the changes in molecular size and weight as well as in composition of organic matter. The investigation allow to assess a decrease in the contribution of two terrestrial components (A and C) with increasing salinity (~ 1.64 % and ~ 1.89 % in SML and ~ 0.78 % and ~ 0.71 % in SS, respectively) and an increase of in-situ produced components (M and T) with salinity (~ 0.52 % and ~ 2.83 % in SML and ~ 0.98 % and ~ 1.87 % in SS, respectively). Hence, a component T reveals the biggest relative changes along the transect from the Vistula River outlet to Gdansk Deep, both in SML and SS, however an increase was higher in SML than in SS (~ 18.5 % and ~ 12.3 %, respectively). The ratio E2 : E3


2021 ◽  
Author(s):  
Zuzanna Borawska ◽  
Beata Szymczycha ◽  
Marc J. Silberberger ◽  
Marta Szczepanek ◽  
Katarzyna Koziorowska-Makuch ◽  
...  

&lt;p&gt;Dissolved silica (DSi) is an important macronutrient in the marine environment, necessary for growth of many aquatic organisms. Yet, DSi marine cycle is still not fully recognized, especially in dynamic, coastal zones. Although DSi is mainly transported to the sea by rivers, benthic fluxes of DSi, which originate from dissolution of the siliceous remains in the sediments, can also represent an important source of bioavailable silicon in the ocean. Benthic DSi fluxes are mainly powered by diffusion, but their rates are strongly shaped by the benthic fauna. Still, the role of benthos in these processes is not fully recognized. The main goal of this study was to investigate how various environmental factors and benthic fauna may shape the coastal cycle of Si in coastal environments during different seasons.&lt;/p&gt;&lt;p&gt;Our study was conducted in the shallow coastal ecosystems of the southern Baltic Sea characterized by contrasting environmental conditions: shallow, brackish and enclosed Szczecin Lagoon (Oder river estuary), dynamic open waters near &amp;#321;eba with relatively low anthropogenic influence, enclosed Puck Bay and Vistula prodelta. We investigated both shore ecosystems (app. 0.5 m depth) and deeper areas (from 6 up to 60 m depth). DSi concentrations in the bottom waters and environmental characteristics (T, S, O&lt;sub&gt;2&lt;/sub&gt;, sediment organic matter) were investigated at 6 stations, during three seasons (winter, spring and autumn) in years 2019-2020 with s/y Oceania (IOPAN) and directly from the shore. Additionally, samples from shore stations were collected during summer. DSi benthic fluxes were determined at each station by performing &lt;em&gt;ex situ&lt;/em&gt; incubations of sediment cores (n = 4-5) with natural benthic assemblages. The benthic organisms in studied cores were collected, identified, counted, and weighed.&lt;/p&gt;&lt;p&gt;The lowest fluxes were measured at sandy stations while highest return fluxes were observed at muddy sites. High variability in DSi benthic fluxes along studied localities was observed, ranging from -1.11 mmol d&lt;sup&gt;-1&lt;/sup&gt;m&lt;sup&gt;-2&lt;/sup&gt; in summer at shore station in the Puck Bay and up to 6.79 mmol d&lt;sup&gt;-1&lt;/sup&gt;m&lt;sup&gt;-2&lt;/sup&gt; in Szczecin Lagoon in autumn. We used &amp;#160;Gaussian Generalized Linear Models (GLMs) to estimate the role of environmental conditions, benthic fauna characteristics &amp;#160;and interactions among them in the variability of DSi benthic flux across studied localities. The most important predictors for the fluxes were all pair-wise interactions of temperature, total organic carbon, the C/N molar ratio, and the density of benthic macrofauna. Both interaction terms that included C/N ratio, a measure of organic matter quality (i.e. low C/N ratio indicates higher quality), were associated with increased DSi uptake by the sediment. Further, the interaction term between T and benthic marcofauna density was also linked to negative benthic fluxes of DSi. In contrast, the interaction of T and TOC caused a strong increase in DSi return fluxes.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document