scholarly journals Life Cycle Assessment of Renewable Energy Alternatives for Replacement of Natural Gas in Building Material Industry

2015 ◽  
Vol 72 ◽  
pp. 127-134 ◽  
Author(s):  
Mara Repele ◽  
Gatis Bazbauers
Heuristic ◽  
2019 ◽  
Vol 16 (1) ◽  
Author(s):  
David Andrian ◽  
Desrina Yusi Irawati

Penggunaan  polimer, koagulan, alum, dan gas klorin pada proses penjernihan air akan mengakibatkan dampak lingkungan. Pendekatan yang dapat digunakan untuk mengidentifikasi dan menganalisa dampak lingkungan adalah dengan metode Life Cycle Assessment (LCA). LCA  terdiri dari empat tahapan utama, yaitu goal and scope, Life Cycle Inventory (LCI), Life Cycle Impact Assessment (LCIA), dan Interpretation. Berdasarkan proses software SimaPro 7 metode Impact 2002+, bagian dalam proses pengolahan air yang menimbulkan dampak lingkungan paling besar adalah penggunaan natural gas. Penggunaan natural gas atau listrik per 1 kg air menyebabkan dampak lingkungan non-renewable energy sebesar 5,55E-9 Pt dan pemanasan global sebesar 4,66E-9 Pt. Penggunaan natural gas yang menyebabkan dampak non-renewable energy adalah ketersediaan gas (6E-9 Pt), minyak (7,66E-10 Pt), dan uranium (3,52E-10 Pt) pada tanah semakin berkurang. Penggunaan natural gas yang menyebabkan dampak pemanasan global adalah carbon dioxide hasil pembakaran bahan bakar fosil (5,46E-9 Pt). Besarnya penggunaan listrik pada proses pengolahan air bersih di IPAM disebabkan jarak pengambilan air cukup jauh dan peralatan yang sudah tua.Kata kunci: air, Instalasi Pengolahan Air Minum, Life Cycle Assessment


2021 ◽  
Vol 35 ◽  
pp. 102339
Author(s):  
Miguel A. Morales-Mora ◽  
Joep J.H. Pijpers ◽  
Alejandro Castillo Antonio ◽  
Javier de la Cruz Soto ◽  
Agustín Moisés Alcaraz Calderón

2021 ◽  
Vol 13 (1) ◽  
pp. 396
Author(s):  
Norasikin Ahmad Ludin ◽  
Nurfarhana Alyssa Ahmad Affandi ◽  
Kathleen Purvis-Roberts ◽  
Azah Ahmad ◽  
Mohd Adib Ibrahim ◽  
...  

Sustainability has been greatly impacted by the reality of budgets and available resources as a targeted range of carbon emission reduction greatly increases due to climate change. This study analyses the technical and economic feasibility for three types of solar photovoltaic (PV) renewable energy (RE) systems; (i) solar stand-alone, a non-grid-connected building rooftop-mounted structure, (ii) solar rooftop, a grid-connected building rooftop-mounted structure, (iii) solar farm, a grid-connected land-mounted structure in three tropical climate regions. Technical scientific and economic tools, including life cycle assessment (LCA) and life cycle cost assessment (LCCA) with an integrated framework from a Malaysian case study were applied to similar climatic regions, Thailand, and Indonesia. The short-term, future scaled-up scenario was defined using a proxy technology and estimated data. Environmental locations for this scenario were identified, the environmental impacts were compared, and the techno-economic output were analysed. The scope of this study is cradle-to-grave. Levelised cost of energy (LCOE) was greatly affected due to PV performance degradation rate, especially the critical shading issues for large-scale installations. Despite the land use impact, increased CO2 emissions accumulate over time with regard to energy mix of the country, which requires the need for long-term procurement of both carbon and investment return. With regards to profitably, grid-connected roof-mounted systems achieve the lowest LCOE as compared to other types of installation, ranging from 0.0491 USD/kWh to 0.0605 USD/kWh under a 6% discounted rate. A simple payback (SPB) time between 7–10 years on average depends on annual power generated by the system with estimated energy payback of 0.40–0.55 years for common polycrystalline photovoltaic technology. Thus, maintaining the whole system by ensuring a low degradation rate of 0.2% over a long period of time is essential to generate benefits for both investors and the environment. Emerging technologies are progressing at an exponential rate in order to fill the gap of establishing renewable energy as an attractive business plan. Life cycle assessment is considered an excellent tool to assess the environmental impact of renewable energy.


2010 ◽  
Vol 160-162 ◽  
pp. 1067-1071
Author(s):  
Bao Zhu Sheng ◽  
Xiao Juan Chen

Building material industry which belongs to High-carbon is facing severe challenges and great opportunity when coping with global climatic change. Low-carbon is an inevitable trend that economy grows. Low-carbon economy is the backbone for economic transition and also the right way for people move towards future .By means of structural adjustment and technology innovation building material industry is destined to achieve full vitality in the transition to the low-carbon economy.


2018 ◽  
Vol 29 (5) ◽  
pp. 826-841 ◽  
Author(s):  
Binita Shah ◽  
Seema Unnikrishnan

Purpose India is a developing economy along with an increasing population estimated to be the largest populated country in about seven years. Simultaneously, its power consumption is projected to increase more than double by 2020. Currently, the dependence on coal is relatively high, making it the largest global greenhouse gas emitting sector which is a matter of great concern. The purpose of this paper is to evaluate the environmental impacts of the natural gas electricity generation in India and propose a model using a life cycle assessment (LCA) approach. Design/methodology/approach LCA is used as a tool to evaluate the environmental impact of the natural gas combined cycle (NGCC) power plant, as it adopts a holistic approach towards the whole process. The LCA methodology used in this study follows the ISO 14040 and 14044 standards (ISO 14040: 2009; ISO 14044: 2009). A questionnaire was designed for data collection and validated by expert review primary data for the annual environmental emission was collected by personally visiting the power plant. The study follows a cradle to gate assessment using the CML (2001) methodology. Findings The analysis reveals that the main impacts were during the process of combustion. The Global warming potential is approximately 0.50 kg CO2 equivalents per kWh of electricity generation from this gas-based power plant. These results can be used by stakeholders, experts and members who are authorised to probe positive initiative for the reduction of environmental impacts from the power generation sector. Practical implications Considering the pace of growth of economic development of India, it is the need of the hour to emphasise on the patterns of sustainable energy generation which is an important subject to be addressed considering India’s ratification to the Paris Climate Change Agreement. This paper analyzes the environmental impacts of gas-based electricity generation. Originality/value Presenting this case study is an opportunity to get a glimpse of the challenges associated with gas-based electricity generation in India. It gives a direction and helps us to better understand the right spot which require efforts for the improvement of sustainable energy generation processes, by taking appropriate measures for emission reduction. This paper also proposes a model for gas-based electricity generation in India. It has been developed following an LCA approach. As far as we aware, this is the first study which proposes an LCA model for gas-based electricity generation in India. The model is developed in line with the LCA methodology and focusses on the impact categories specific for gas-based electricity generation.


Sign in / Sign up

Export Citation Format

Share Document