scholarly journals Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach

2021 ◽  
Vol 13 (1) ◽  
pp. 396
Author(s):  
Norasikin Ahmad Ludin ◽  
Nurfarhana Alyssa Ahmad Affandi ◽  
Kathleen Purvis-Roberts ◽  
Azah Ahmad ◽  
Mohd Adib Ibrahim ◽  
...  

Sustainability has been greatly impacted by the reality of budgets and available resources as a targeted range of carbon emission reduction greatly increases due to climate change. This study analyses the technical and economic feasibility for three types of solar photovoltaic (PV) renewable energy (RE) systems; (i) solar stand-alone, a non-grid-connected building rooftop-mounted structure, (ii) solar rooftop, a grid-connected building rooftop-mounted structure, (iii) solar farm, a grid-connected land-mounted structure in three tropical climate regions. Technical scientific and economic tools, including life cycle assessment (LCA) and life cycle cost assessment (LCCA) with an integrated framework from a Malaysian case study were applied to similar climatic regions, Thailand, and Indonesia. The short-term, future scaled-up scenario was defined using a proxy technology and estimated data. Environmental locations for this scenario were identified, the environmental impacts were compared, and the techno-economic output were analysed. The scope of this study is cradle-to-grave. Levelised cost of energy (LCOE) was greatly affected due to PV performance degradation rate, especially the critical shading issues for large-scale installations. Despite the land use impact, increased CO2 emissions accumulate over time with regard to energy mix of the country, which requires the need for long-term procurement of both carbon and investment return. With regards to profitably, grid-connected roof-mounted systems achieve the lowest LCOE as compared to other types of installation, ranging from 0.0491 USD/kWh to 0.0605 USD/kWh under a 6% discounted rate. A simple payback (SPB) time between 7–10 years on average depends on annual power generated by the system with estimated energy payback of 0.40–0.55 years for common polycrystalline photovoltaic technology. Thus, maintaining the whole system by ensuring a low degradation rate of 0.2% over a long period of time is essential to generate benefits for both investors and the environment. Emerging technologies are progressing at an exponential rate in order to fill the gap of establishing renewable energy as an attractive business plan. Life cycle assessment is considered an excellent tool to assess the environmental impact of renewable energy.

2018 ◽  
Vol 96 ◽  
pp. 11-28 ◽  
Author(s):  
Norasikin Ahmad Ludin ◽  
Nur Ifthitah Mustafa ◽  
Marlia M. Hanafiah ◽  
Mohd Adib Ibrahim ◽  
Mohd Asri Mat Teridi ◽  
...  

2021 ◽  
Vol 773 ◽  
pp. 145573
Author(s):  
Ricardo González-Quintero ◽  
Diana María Bolívar-Vergara ◽  
Ngonidzashe Chirinda ◽  
Jacobo Arango ◽  
Heiber Pantevez ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1753
Author(s):  
Giulia Maesano ◽  
Gaetano Chinnici ◽  
Giacomo Falcone ◽  
Claudio Bellia ◽  
Maria Raimondo ◽  
...  

This paper aims to achieve an economic feasibility and life cycle assessment of three different olive cultivation systems in the Mediterranean area through the joint use of economic and environmental indicators, in order to identify the key elements to optimize their economic performance and a lower environmental impact. Three different management systems of olive cultivation were analysed by distinguishing Treatment 1—Fully Irrigated, Treatment 2—Partially Irrigated, and Treatment 3—Non-Irrigated, which were conducted through different levels of irrigation strategies. The three scenarios were examined using a Life Cycle Assessment methodology to assess the environmental impacts, and the impact in terms of water footprint was investigated using the Water Scarcity Index approach. The economic sustainability evaluation of olive cultivation was carried out through economic indicators, taking into account all of the cost and revenue factors of the olive cultivation in each management system. The results showed, overall, a suitable level of profitability of different scenarios, except for the Partially Irrigated treatment, as the investment costs of the irrigation system are not economically sustainable with regard to the revenue obtained. Furthermore, the findings highlighted the importance of irrigation management strategies to decrease agricultural practice costs and the negative environmental impact of olive production.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1029
Author(s):  
Souraya Benalia ◽  
Giacomo Falcone ◽  
Teodora Stillitano ◽  
Anna Irene De Luca ◽  
Alfio Strano ◽  
...  

Anaerobic codigestion of olive mill wastewater for renewable energy production constitutes a promising process to overcome management and environmental issues due to their conventional disposal. The present study aims at assessing biogas and biomethane production from olive mill wastewater by performing biochemical methane potential tests. Hence, mixtures containing 0% (blank), 20% and 30% olive mill wastewater, in volume, were experimented on under mesophilic conditions. In addition, life cycle assessment and life cycle costing were performed for sustainability analysis. Particularly, life cycle assessment allowed assessing the potential environmental impact resulting from the tested process, while life cycle costing in conjunction with specific economic indicators allowed performing the economic feasibility analysis. The research highlighted reliable outcomes: higher amounts of biogas (80.22 ± 24.49 NL.kgSV−1) and methane (47.68 ± 17.55 NL.kgSV−1) were obtained when implementing a higher amount of olive mill wastewater (30%) (v/v) in the batch reactors. According to life cycle assessment, the biogas ecoprofile was better when using 20% (v/v) olive mill wastewater. Similarly, the economic results demonstrated the profitability of the process, with better performances when using 20% (v/v) olive mill wastewater. These findings confirm the advantages from using farm and food industry by-products for the production of renewable energy as well as organic fertilizers, which could be used in situ to enhance farm sustainability.


2020 ◽  
pp. 152808372092473 ◽  
Author(s):  
M Ramesh ◽  
C Deepa ◽  
L Rajesh Kumar ◽  
MR Sanjay ◽  
Suchart Siengchin

From the beginning of humanity, our generation has been on the edge of finding suitable solutions to increase the product’s life-cycle and reduce the environmental impact of the product. Life-cycle assessment is a process to evaluate the effects of products or services whereas environmental impact assessment is an inter-related process of evaluating the environmental impact of a product or service. Plant fibre reinforced composites are developed by researchers, which are kindled by economic and environmental trepidations. The forest’s wood resources will decline and deplete due to environmental issues caused by natural and renewable resources. The main objective of this review is to conduct life-cycle assessment and environmental impact assessment studies on plant fibres and manufacturing of bio-composites from these fibres. It identifies the differences and causes to the environment, in particular about the total effect on the surrounding atmosphere. Another aim of this work is to assess a techno-economic feasibility based on the environmental impact category. In addition to this, inventory assessments of these composites are also dealt with, alongside the industrial applications. This review concludes a summary of current research and point out the opportunities and challenges for future researchers.


Author(s):  
Cheila Almeida ◽  
Philippe Loubet ◽  
Tamíris Pacheco da Costa ◽  
Paula Quinteiro ◽  
Jara Laso ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Author(s):  
Yuma Sasaki ◽  
Takahiro Orikasa ◽  
Nobutaka Nakamura ◽  
Kiyotada Hayashi ◽  
Yoshihito Yasaka ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


2019 ◽  
Vol 11 (5) ◽  
pp. 1370 ◽  
Author(s):  
Shutaro Takeda ◽  
Alexander Keeley ◽  
Shigeki Sakurai ◽  
Shunsuke Managi ◽  
Catherine Norris

The adoption of renewable energy technologies in developing nations is recognized to have positive environmental impacts; however, what are their effects on the electricity supply chain workers? This article provides a quantitative analysis on this question through a relatively new framework called social life cycle assessment, taking Malaysia as a case example. Impact assessments by the authors show that electricity from renewables has greater adverse impacts on supply chain workers than the conventional electricity mix: Electricity production with biomass requires 127% longer labor hours per unit-electricity under the risk of human rights violations, while the solar photovoltaic requires 95% longer labor hours per unit-electricity. However, our assessment also indicates that renewables have less impacts per dollar-spent. In fact, the impact of solar photovoltaic would be 60% less than the conventional mix when it attains grid parity. The answer of “are renewables as friendly to humans as to the environment?” is “not-yet, but eventually.”


Sign in / Sign up

Export Citation Format

Share Document