scholarly journals Parameter Optimization of Three Phase Boost Inverter Using Genetic Algorithm for Linear Loads

2016 ◽  
Vol 90 ◽  
pp. 559-565 ◽  
Author(s):  
G. Arunkumar ◽  
I. Gnanambal ◽  
S. Naresh ◽  
P.C. Karthik ◽  
Jagadish Kumar Patra
2014 ◽  
Vol 56 (9) ◽  
pp. 728-736 ◽  
Author(s):  
Krishnasamy Vijaykumar ◽  
Kavan Panneerselvam ◽  
Abdullah Naveen Sait

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4407
Author(s):  
Mbika Muteba

There is a necessity to design a three-phase squirrel cage induction motor (SCIM) for high-speed applications with a larger air gap length in order to limit the distortion of air gap flux density, the thermal expansion of stator and rotor teeth, centrifugal forces, and the magnetic pull. To that effect, a larger air gap length lowers the power factor, efficiency, and torque density of a three-phase SCIM. This should inform motor design engineers to take special care during the design process of a three-phase SCIM by selecting an air gap length that will provide optimal performance. This paper presents an approach that would assist with the selection of an optimal air gap length (OAL) and optimal capacitive auxiliary stator winding (OCASW) configuration for a high torque per ampere (TPA) three-phase SCIM. A genetic algorithm (GA) assisted by finite element analysis (FEA) is used in the design process to determine the OAL and OCASW required to obtain a high torque per ampere without compromising the merit of achieving an excellent power factor and high efficiency for a three-phase SCIM. The performance of the optimized three-phase SCIM is compared to unoptimized machines. The results obtained from FEA are validated through experimental measurements. Owing to the penalty functions related to the value of objective and constraint functions introduced in the genetic algorithm model, both the FEA and experimental results provide evidence that an enhanced torque per ampere three-phase SCIM can be realized for a large OAL and OCASW with high efficiency and an excellent power factor in different working conditions.


Author(s):  
P. Vimala ◽  
C. R. Balamurugan ◽  
A. Subramanian ◽  
T. Vishwanath

The FOPID and PID controller are designed to control the speed of <br /> the BLDC motor. The parameters , , , λ and µ of these controller are optimized based on genetic algorithm. The optimized coefficients keep in track with zero error signals. The output of the controller is given to the variable dc source which varies the input voltage to the three phase inverter depending on the input signal. The three phase inverter gives the voltage to the BLDC motor which enhances the stability of the system. <br /> The effectiveness of the controller is demonstrated by simulation.


Sign in / Sign up

Export Citation Format

Share Document