scholarly journals Fluid Distribution Effects on P-wave Velocity of CO2/brine Saturated Rocks: A Comparison Study and Implications for CO2 Storage Monitoring Using Seismic Method

2017 ◽  
Vol 114 ◽  
pp. 3786-3792 ◽  
Author(s):  
Yi Zhang ◽  
Hyuck Park ◽  
Osamu Nishizawa ◽  
Tamotsu Kiyama ◽  
Ziqiu Xue
2020 ◽  
Author(s):  
Christian David ◽  
Joël Sarout ◽  
Christophe Barnes ◽  
Jérémie Dautriat ◽  
Lucas Pimienta

<p>During the production of hydrocarbon reservoirs, EOR operations, storage of CO2 underground or geothermal fluid exchanges at depth, fluid substitution processes can lead to significant changes in rock properties which can be captured from the variations in seismic waves attributes. In the laboratory, fluid substitution processes can be investigated using ultrasonic monitoring. </p><p>The motivation of our study was to identify the seismic attributes of fluid substitution in reservoir rocks through a direct comparison between the variation in amplitude, velocity, spectral content, energy, and the actual fluid distribution in the rocks. Different arrays of ultrasonic P-wave sensors were used to record at constant time steps the waveforms during fluid substitution experiments. Two different kinds of experiments are presented: (i) water injection experiments in oil-saturated samples under stress in a triaxial setup mimicking EOR operations, (ii) spontaneous water imbibition experiments at room conditions.</p><p>In the water injection tests on a poorly consolidated sandstone saturated with oil and loaded at high deviatoric stresses, water weakening triggers mechanical instabilities leading to the rock failure. The onset of such instabilities can be followed with ultrasonic monitoring either in the passive mode (acoustic emissions recording) or in the active mode (P wave velocity survey).</p><p>In the water imbibition experiments, a methodology based on the analytical signal and instantaneous phase was designed to decompose each waveform into discrete wavelets associated with direct or reflected waves. The energy carried by the wavelets is very sensitive to the fluid substitution process: the coda wavelets are impacted as soon as imbibition starts and can be used as a precursor for remote fluid substitution. It is also shown that the amplitude of the first P-wave arrival is impacted by the upward moving fluid front before the P-wave velocity is. Several scenarios are discussed to explain the decoupling between P wave amplitude and velocity variations during fluid substitution processes.</p>


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1437-1442
Author(s):  
CHENGYUAN ZHANG ◽  
XIAOYAN LIU ◽  
DAOYING XI ◽  
QUANSHENG LIU

It is very important to know how the reservoir rock and its fluid properties are linked to seismic dynamic response. Literatures show that there are a variety of rock-physics models such as the most famous Biot-Gassmann equation aimed at the relationship between seismic velocity and liquid saturation. Most of these models make a fundamental assumption of one fluid phase or homogeneous phase within the pore volume. In this paper, we discuss possible seismic velocities change in a two immiscible pore fluids (i.e. water-gas) saturated reservoir with patchy saturation distribution. It is found that P-wave velocity of a reservoir rock with the same saturation but different pore fluid distribution exhibits noticeable variation and deviate overall from Gassmann's results. We use DEM theory to explain this phenomenon. It belongs to hybrid approach in rock-physics modeling and can handle complex pore-fluid-distribution cases. Based on the modeling study, we found that various fluid-distribution models may significantly affect the modulus and P-wave velocity. The seismic reflection time, amplitude and phase characteristics may change with the choice of pore-fluid-distribution models. Relevant rock mechanical experiments indicate the same trend of seismic responses. It also be proven by seismic reservoir monitoring experiment (time lapse study) that incorrect conclusion may be drawn about the strong seismic reflection in pure Utsira Sand if the microscopic pore-fluid-distribution effects are not taken into account.


2021 ◽  
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

AbstractA variety of geophysical methods and analytical modeling are applied to determine the rockburst hazard in Polish coal mines. In particularly unfavorable local conditions, seismic profiling, active/passive seismic tomography, as well as analytical state of stress calculating methods are recommended. They are helpful in verifying the reliability of rockburst hazard forecasts. In the article, the combined analysis of the state of stress determined by active seismic tomography and analytical modeling was conducted taking into account the relationship between the location of stress concentration zones and the level of rockburst hazard. A longwall panel in the coal seam 501 at a depth of ca.700 m in one of the hard coal mines operating in the Upper Silesian Coal Basin was a subject of the analysis. The seismic tomography was applied for the reconstruction of P-wave velocity fields. The analytical modeling was used to calculate the vertical stress states basing on classical solutions offered by rock mechanics. The variability of the P-wave velocity field and location of seismic anomaly in the coal seam in relation to the calculated vertical stress field arising in the mined coal seam served to assess of rockburst hazard. The applied methods partially proved their adequacy in practical applications, providing valuable information on the design and performance of mining operations.


2021 ◽  
pp. 228973
Author(s):  
Junhao Qu ◽  
Stephen S. Gao ◽  
Changzai Wang ◽  
Kelly H. Liu ◽  
Shaohui Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document