scholarly journals Experimental Evaluation of Injection Pressure and Flow Rate Effects on Geological CO2 Sequestration Using MRI

2017 ◽  
Vol 114 ◽  
pp. 4986-4993 ◽  
Author(s):  
Ying Teng ◽  
Yu Liu ◽  
Guohuan Lu ◽  
Lanlan Jiang ◽  
Dayong Wang ◽  
...  
2003 ◽  
Vol 58 (7) ◽  
pp. 1135-1146 ◽  
Author(s):  
Moshe Ben-Tullilah ◽  
Einat Alajem ◽  
Rina Gal ◽  
Moshe Sheintuch
Keyword(s):  

2021 ◽  
Author(s):  
Miguel Angel Cedeno

Abstract The unconventional resources development has grown tremendously as a result of the advancement in horizontal drilling technology coupled with hydraulic fracturing. However, as more wells are drilled and fractured close to each other, frac hits have become a major challenge in these wells. The aim of this work is to investigate the effect of nitrogen injection flow rate and pressure on unloading frac hits gas wells in transient multiphase flow. A numerical simulation model was created using a transient multiphase flow simulator to mimic the unloading process of frac hits by injecting nitrogen from the surface through the annulus section of the well. Many simulation cases were created and analyzed to comprehend the effect of the nitrogen injection rate and pressure on the unloading of frac hits. The model mimicked real field data from currently active well in the Eagle Ford Shale. The results showed that as the nitrogen injection pressure increases, the nitrogen volume and the time to unload the frac hits decrease. On the other hand, increasing the injection rate of nitrogen will increase the nitrogen volume required to unload the frac hits. In addition, the time to unload frac hits will be decreased as the nitrogen injection rate increases. These results indicate that the time required to unload frac hits will be minimized if higher flow rates of nitrogen were utilized. Nonetheless, the volume of nitrogen required to unload the frac hits will be maximized. An important observation to highlight is that the operators can save money by reducing the time for injecting nitrogen. This observation was verified when increasing the injection pressure in the frac hit well in the Eagle Ford Shale, the time of injection was reduced 20%. This study presents the effects of nitrogen injection flow rate and injection pressure for unloading frac hits in gas wells. Due to the lack of published studies about this topic, this work can serve as a practical guideline for unloading frac hits in gas wells.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 525
Author(s):  
Geng ◽  
Abdollahi-Nasab ◽  
An ◽  
Chen ◽  
Lee ◽  
...  

The remediation of beaches contaminated with oil includes the application of surfactants and/or the application of amendments to enhance oil biodegradation (i.e., bioremediation). This study focused on evaluating the practicability of the high pressure injection (HPI) of dissolved chemicals into the subsurface of a lentic Alaskan beach subjected to a 5 m tidal range. A conservative tracer, lithium, in a lithium bromide (LiBr) solution, was injected into the beach at 1.0 m depth near the mid-tide line. The flow rate was varied between 1.0 and 1.5 L/min, and the resulting injection pressure varied between 3 m and 6 m of water. The concentration of the injected tracer was measured from four surrounding monitoring wells at multiple depths. The HPI associated with a flow rate of 1.5 L/min resulted in a Darcy flux in the cross-shore direction at 1.15 × 10−5 m/s compared to that of 7.5 × 10−6 m/s under normal conditions. The HPI, thus, enhanced the hydraulic conveyance of the beach. The results revealed that the tracer plume dispersed an area of ~12 m2 within 24 h. These results suggest that deep injection of solutions into a gravel beach is a viable approach for remediating beaches.


Sign in / Sign up

Export Citation Format

Share Document