scholarly journals Investigating the effect of Cu/zeolite on deoxygenation of bio-oil from pyrolysis of pine wood

2019 ◽  
Vol 160 ◽  
pp. 186-193 ◽  
Author(s):  
Ravinder Kumar ◽  
Vladimir Strezov ◽  
Tao Kan ◽  
Haftom Weldekidan ◽  
Jing He
Keyword(s):  
Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121778
Author(s):  
Shasha Liu ◽  
Gang Wu ◽  
Syed Shatir A. Syed-Hassan ◽  
Bin Li ◽  
Xun Hu ◽  
...  

2010 ◽  
Vol 101 (21) ◽  
pp. 8389-8395 ◽  
Author(s):  
Suchithra Thangalazhy-Gopakumar ◽  
Sushil Adhikari ◽  
Harideepan Ravindran ◽  
Ram B. Gupta ◽  
Oladiran Fasina ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 163-169
Author(s):  
Nurgül Özbay ◽  
Elif Yaman

Pyrolysis of lignocellulosic biomass with acidic pre-treatment to produce valuable bio-chemicals has been carried out in an integrated pyrolysis-gas chromatograph/mass spectrometry system. Three different waste biomasses (fir wood sawdust, pine wood sawdust and nutshell) were subjected to acidic solution to specify the acid pre-treatment effect on biomass chemical structure, thermal degradation profile and pyrolysis products. Post acid pre-treatments, the changes in the biomasses and thermal degradation profile were studied through proximate, structure and ultimate analysis and thermogravimetric. The pre-treatment significantly reduced the inorganic, cellulose and hemicellulose content in biomass samples. According to the pyrolysis experiment results, acid pre-treatment provided the increasing of the amount of phenolic in the degradation products at 10 min pyrolysis time. All the results would assist further understanding of thermal decomposition and thermo-chemical application for bio-fuels and bio-chemicals of fir wood sawdust, pine wood sawdust and nutshell.Article History: Received January 15th 2018; Received in revised form May 24th 2018; Accepted 7th June 2018; Available onlineHow to Cite This Article: Ozbay, N. and Yaman, E (2018) Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass. Int. Journal of Renewable Energy Development, 7(2), 163-169.https://doi.org/10.14710/ijred.7.2.163-169


2020 ◽  
Vol 133 ◽  
pp. 109725
Author(s):  
Jaber Gharib ◽  
Shusheng Pang ◽  
Daniel Holland
Keyword(s):  

2019 ◽  
Vol 108 ◽  
pp. 02004 ◽  
Author(s):  
Mariusz Wądrzyk ◽  
Magdalena Berdel ◽  
Rafał Janus ◽  
Derk Willem Frederik Brilman

Hydrothermal liquefaction processes (HTL) comprise complex chemical and physical transformations of biomass under the conditions of high temperature and pressure, commonly near- or supercritical water. During this processes, the components of biomass undergo various complicated chemical reactions strongly influenced by process variables. In this study, lignocellulosic biomass (pine wood) has been converted via liquefaction in subcritical water to bio-oil, water-soluble organics, gas and solid products. The process parameters (i.e. temperature and time processing) affecting the bio-oil yields and composition were comparatively studied. The chemical composition of resulting bio-oils was analyzed by means of mid-infrared spectroscopy, gel permeation chromatography, gas chromatography coupled to mass spectrometry and elemental analysis. The maximum bio-oil yield (38.35 wt.%) was obtained at 350 ºC for 10 min. The HHV of the obtained resultant bio-oils varied in the range of 24-28 MJ kg-1. Bio-oils from HTL of pine wood are complex mixtures of aromatic and cyclic compounds with numerous hydroxyl and carboxyl functional groups. The experiments exhibited that the increase in the temperature results in adeeper decomposition of biomass manifested by the higher yield of bio-oil and its gradual deoxygenation. In fact, the obtained oil products are promising, valuable intermediates, which may act as a source of many valueadded chemicals.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5666-5678
Author(s):  
Bo-Zheng Li ◽  
Dong-Mei Bi ◽  
Qing Dong ◽  
Yong-Jun Li ◽  
Ya-Ya Liu ◽  
...  

Bio-oil can serve as an alternative fuel source or resource to extract high value-added chemicals. This paper focuses on the effect of six types of biomass (rape straw, corn straw, walnut shell, chestnut shell, camphor wood, and pine wood) and ZnCl2 catalyst on the bio-oil yield and chemicals in the bio-oil, including aldehydes, ketones, and four high-value chemicals (1-hydroxy-2-butanone, propionaldehyde, 5-HMF, 2(5H)-furanon). The results showed that the yields of bio-oil decreased when the ZnCl2 was the catalyst. The ZnCl2 promoted the production of aldehydes and ketones. The higher contents of aldehydes and ketones were obtained from camphor and pine wood, at 58.9 wt% and 42.0 wt%, respectively. The ZnCl2 catalyst exhibited an active influence on the production of 1-hydroxy-2-butanone, propionaldehyde, 5-HMF, and 2(5H)-furanon. Compared with the non-catalytic pyrolysis, the content of 1-hydroxy-2-butanone and 2(5H)-furanone in bio-oil increased by 936% and 612%, respectively. The contents of propionaldehyde and 5-HMF in catalytic bio-oil were the highest from rape straw and increased by 193% and 86%, respectively.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1437
Author(s):  
Anissa Khelfa ◽  
Filipe Augusto Rodrigues ◽  
Mohamed Koubaa ◽  
Eugène Vorobiev

Pyrolysis of pine wood sawdust was carried out using microwave-heating technology in the presence of activated carbon (AC). Experimental conditions were of 20 min processing time, 10 wt.% of AC, and a microwave power varying from 100 to 800 W. The results obtained showed that the microwave absorber allowed increasing the bio-oil yield up to 2 folds by reducing the charcoal fraction. The maximum temperature reached was 505 °C at 800 W. The higher heating values (HHV) of the solid residues ranged from 17.6 to 30.3 MJ/kg. The highest HHV was obtained for the sample heated at 800 W with 10 wt.% of AC, which was 33% higher than the non-charged sample heated at the same power. Furthermore, the addition of AC allowed showing the probable catalytic effect of the AC in the charged sample pyrolysis bio-oils.


BioResources ◽  
2017 ◽  
Vol 12 (2) ◽  
Author(s):  
Xiaoxiang Jiang ◽  
Tiantian Zhao ◽  
Yan Shi ◽  
Jing Wang ◽  
Jingdan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document