scholarly journals Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass

2018 ◽  
Vol 7 (2) ◽  
pp. 163-169
Author(s):  
Nurgül Özbay ◽  
Elif Yaman

Pyrolysis of lignocellulosic biomass with acidic pre-treatment to produce valuable bio-chemicals has been carried out in an integrated pyrolysis-gas chromatograph/mass spectrometry system. Three different waste biomasses (fir wood sawdust, pine wood sawdust and nutshell) were subjected to acidic solution to specify the acid pre-treatment effect on biomass chemical structure, thermal degradation profile and pyrolysis products. Post acid pre-treatments, the changes in the biomasses and thermal degradation profile were studied through proximate, structure and ultimate analysis and thermogravimetric. The pre-treatment significantly reduced the inorganic, cellulose and hemicellulose content in biomass samples. According to the pyrolysis experiment results, acid pre-treatment provided the increasing of the amount of phenolic in the degradation products at 10 min pyrolysis time. All the results would assist further understanding of thermal decomposition and thermo-chemical application for bio-fuels and bio-chemicals of fir wood sawdust, pine wood sawdust and nutshell.Article History: Received January 15th 2018; Received in revised form May 24th 2018; Accepted 7th June 2018; Available onlineHow to Cite This Article: Ozbay, N. and Yaman, E (2018) Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass. Int. Journal of Renewable Energy Development, 7(2), 163-169.https://doi.org/10.14710/ijred.7.2.163-169

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1437
Author(s):  
Anissa Khelfa ◽  
Filipe Augusto Rodrigues ◽  
Mohamed Koubaa ◽  
Eugène Vorobiev

Pyrolysis of pine wood sawdust was carried out using microwave-heating technology in the presence of activated carbon (AC). Experimental conditions were of 20 min processing time, 10 wt.% of AC, and a microwave power varying from 100 to 800 W. The results obtained showed that the microwave absorber allowed increasing the bio-oil yield up to 2 folds by reducing the charcoal fraction. The maximum temperature reached was 505 °C at 800 W. The higher heating values (HHV) of the solid residues ranged from 17.6 to 30.3 MJ/kg. The highest HHV was obtained for the sample heated at 800 W with 10 wt.% of AC, which was 33% higher than the non-charged sample heated at the same power. Furthermore, the addition of AC allowed showing the probable catalytic effect of the AC in the charged sample pyrolysis bio-oils.


Author(s):  
Zbigniew Czech ◽  
Agnieszka Kowalczyk ◽  
Dominika Sowa

The manuscript describes pyrolysis of copolymers based on selected alkyl methacrylates containing C1-C8 alkyl side chain at temperatures between 250 °C and 400 °C which was studied using pyrolysis-gas chromatography. The kind and composition of thermal degradation products gave practical information about the mechanism of pyrolysis of copolymers synthesized by using of typical commercially available alkyl methacrylates. It was observed that the main thermal degradation products from alkyl methacrylate copolymers are monomers, in this case alkyl methacrylates using by synthesis. Other pyrolysis by-products formed during thermal degradation were carbon dioxide, carbon monoxide, methane, ethane, methanol, ethanol and propanol-1.


RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 25975-25985 ◽  
Author(s):  
A. Arregi ◽  
G. Lopez ◽  
M. Amutio ◽  
I. Barbarias ◽  
J. Bilbao ◽  
...  

The continuous fast pyrolysis of pine wood sawdust has been studied in a conical spouted bed reactor (CSBR) followed by in-line steam reforming of the pyrolysis vapours in a fluidised bed reactor on a Ni commercial catalyst.


Sign in / Sign up

Export Citation Format

Share Document