scholarly journals UFNGBM (1,1): A novel unbiased fractional grey Bernoulli model with Whale Optimization Algorithm and its application to electricity consumption forecasting in China

2021 ◽  
Vol 7 ◽  
pp. 7405-7423
Author(s):  
Bin Pu ◽  
Fengtao Nan ◽  
Ningbo Zhu ◽  
Ye Yuan ◽  
Wanli Xie

Author(s):  
Medhat Abd el Azem El Sayed Rostum ◽  
Hassan Mohamed Mahmoud Moustafa ◽  
Ibrahim El Sayed Ziedan ◽  
Amr Ahmed Zamel

Purpose The current challenge for forecasting smart meters electricity consumption lies in the uncertainty and volatility of load profiles. Moreover, forecasting the electricity consumption for all the meters requires an enormous amount of time. Most papers tend to avoid such complexity by forecasting the electricity consumption at an aggregated level. This paper aims to forecast the electricity consumption for all smart meters at an individual level. This paper, for the first time, takes into account the computational time for training and forecasting the electricity consumption of all the meters. Design/methodology/approach A novel hybrid autoregressive-statistical equations idea model with the help of clustering and whale optimization algorithm (ARSEI-WOA) is proposed in this paper to forecast the electricity consumption of all the meters with best performance in terms of computational time and prediction accuracy. Findings The proposed model was tested using realistic Irish smart meters energy data and its performance was compared with nine regression methods including: autoregressive integrated moving average, partial least squares regression, conditional inference tree, M5 rule-based model, k-nearest neighbor, multilayer perceptron, RandomForest, RPART and support vector regression. Results have proved that ARSEI-WOA is an efficient model that is able to achieve an accurate prediction with low computational time. Originality/value This paper presents a new hybrid ARSEI model to perform smart meters load forecasting at an individual level instead of an aggregated one. With the help of clustering technique, similar meters are grouped into a few clusters from which reduce the computational time of the training and forecasting process. In addition, WOA improves the prediction accuracy of each meter by finding an optimal factor between the average electricity consumption values of each cluster and the electricity consumption values for each one of its meters.



2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jianming Jiang ◽  
Ting Feng ◽  
Caixia Liu

In order to improve the prediction performance of the existing nonlinear grey Bernoulli model and extend its applicable range, an improved nonlinear grey Bernoulli model is presented by using a grey modeling technique and optimization methods. First, the traditional whitening equation of nonlinear grey Bernoulli model is transformed into its linear formulae. Second, improved structural parameters of the model are proposed to eliminate the inherent error caused by the leap jumping from the differential equation to the difference one. As a result, an improved nonlinear grey Bernoulli model is obtained. Finally, the structural parameters of the model are calculated by the whale optimization algorithm. The numerical results of several examples show that the presented model’s prediction accuracy is higher than that of the existing models, and the proposed model is more suitable for these practical cases.



Author(s):  
Nitin Chouhan ◽  
Uma Rathore Bhatt ◽  
Raksha Upadhyay

: Fiber Wireless Access Network is the blend of passive optical network and wireless access network. This network provides higher capacity, better flexibility, more stability and improved reliability to the users at lower cost. Network component (such as Optical Network Unit (ONU)) placement is one of the major research issues which affects the network design, performance and cost. Considering all these concerns, we implement customized Whale Optimization Algorithm (WOA) for ONU placement. Initially whale optimization algorithm is applied to get optimized position of ONUs, which is followed by reduction of number of ONUs in the network. Reduction of ONUs is done such that with fewer number of ONUs all routers present in the network can communicate. In order to ensure the performance of the network we compute the network parameters such as Packet Delivery Ratio (PDR), Total Time for Delivering the Packets in the Network (TTDPN) and percentage reduction in power consumption for the proposed algorithm. The performance of the proposed work is compared with existing algorithms (deterministic and centrally placed ONUs with predefined hops) and has been analyzed through extensive simulation. The result shows that the proposed algorithm is superior to the other algorithms in terms of minimum required ONUs and reduced power consumption in the network with almost same packet delivery ratio and total time for delivering the packets in the network. Therefore, present work is suitable for developing cost-effective FiWi network with maintained network performance.



Author(s):  
Quan Liu ◽  
Yang Liu ◽  
Congsheng Zhang ◽  
Zhili Ruan ◽  
Wei Meng ◽  
...  


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.



Author(s):  
Chunzhi Wang ◽  
Min Li ◽  
Ruoxi Wang ◽  
Han Yu ◽  
Shuping Wang

AbstractAs an important part of smart city construction, traffic image denoising has been studied widely. Image denoising technique can enhance the performance of segmentation and recognition model and improve the accuracy of segmentation and recognition results. However, due to the different types of noise and the degree of noise pollution, the traditional image denoising methods generally have some problems, such as blurred edges and details, loss of image information. This paper presents an image denoising method based on BP neural network optimized by improved whale optimization algorithm. Firstly, the nonlinear convergence factor and adaptive weight coefficient are introduced into the algorithm to improve the optimization ability and convergence characteristics of the standard whale optimization algorithm. Then, the improved whale optimization algorithm is used to optimize the initial weight and threshold value of BP neural network to overcome the dependence in the construction process, and shorten the training time of the neural network. Finally, the optimized BP neural network is applied to benchmark image denoising and traffic image denoising. The experimental results show that compared with the traditional denoising methods such as Median filtering, Neighborhood average filtering and Wiener filtering, the proposed method has better performance in peak signal-to-noise ratio.



2020 ◽  
pp. 1-12
Author(s):  
Zheping Yan ◽  
Jinzhong Zhang ◽  
Jialing Tang

The accuracy and stability of relative pose estimation of an autonomous underwater vehicle (AUV) and a target depend on whether the characteristics of the underwater image can be accurately and quickly extracted. In this paper, a whale optimization algorithm (WOA) based on lateral inhibition (LI) is proposed to solve the image matching and vision-guided AUV docking problem. The proposed method is named the LI-WOA. The WOA is motivated by the behavior of humpback whales, and it mainly imitates encircling prey, bubble-net attacking and searching for prey to obtain the globally optimal solution in the search space. The WOA not only balances exploration and exploitation but also has a faster convergence speed, higher calculation accuracy and stronger robustness than other approaches. The lateral inhibition mechanism can effectively perform image enhancement and image edge extraction to improve the accuracy and stability of image matching. The LI-WOA combines the optimization efficiency of the WOA and the matching accuracy of the LI mechanism to improve convergence accuracy and the correct matching rate. To verify its effectiveness and feasibility, the WOA is compared with other algorithms by maximizing the similarity between the original image and the template image. The experimental results show that the LI-WOA has a better average value, a higher correct rate, less execution time and stronger robustness than other algorithms. The LI-WOA is an effective and stable method for solving the image matching and vision-guided AUV docking problem.



Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.



Sign in / Sign up

Export Citation Format

Share Document