A health risk-based threshold method to evaluate Urban Atmospheric Environment Carrying Capacity in Beijing-Tianjin-Hebei (BTH) Region

2022 ◽  
Vol 92 ◽  
pp. 106692
Author(s):  
Liyin Shen ◽  
Zhenchuan Yang ◽  
Xiaoyun Du ◽  
Xiaoxuan Wei ◽  
Xi Chen
2019 ◽  
Vol 694 ◽  
pp. 133584 ◽  
Author(s):  
Mariaines Di Dato ◽  
Morena Galešić ◽  
Petra Šimundić ◽  
Roko Andričević

2021 ◽  
Author(s):  
Mukesh Kumar Mahato ◽  
Abhay Kumar Singh ◽  
Soma Giri

Abstract Metals can be apprehended in the atmospheric environment of copper and iron mining areas of Jharkhand, which falls in one of the most mineralised areas of India with extensive mining and industrial activities. The study was taken up to appraise the metal contamination in the atmospheric dust to evaluate the metal fluxes and associated health risk considering the seasonal variations. Sixty samples were analysed for As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn using the inductively coupled plasma mass spectrometer (ICP-MS) and the contamination levels were assessed by various indices. The metal content of dustfall samples exceeded the average shale values for most of the metals. Higher metal concentrations were found in the locations in close vicinity of mining and industrial areas. The principal component analysis suggested both geogenic and anthropogenic sources for metals in the atmospheric dustfall. Human health risk as determined by hazard quotient (HQ) and hazard index (HI) suggested considerable risk to the child populace through the ingestion pathway for both the mining areas, higher being in iron mining areas. The metal flux and the health risk were higher in summers as compared to winters for both the mining areas. Consequently, the results advocate the necessity of periodic monitoring of the freefall dust of the mining areas and development of proper management strategies to reduce the metal pollution.


2020 ◽  
Author(s):  
Morena Galešić ◽  
Mariaines Di Dato ◽  
Roko Andričević

<p>The present work proposes a novel screening tool to improve the quality of recreational coastal water. Indeed, the recreational potential of beach resort depends on its health status, which in marine cities may be threatened by increasing stress produced by anthropogenic activity. In particular, we focus on the beach near an estuary, which may be affected by a considerable load of contaminants, especially when the urban sewage system is combined and designed to spill untreated wastewater directly in the coastal water. In a few words, when the Combined Sewer Overflows (CSOs) are activated, the bacterial concentration in the estuary increases, thereby resulting in a potential hazard for the swimmers’ health. In the present work, the bacterial transport is modelled through a physically-based stochastic framework, whereas the human health risk is evaluated by means of the Quantitative Microbial Risk Assessment (QMRA). As the human health risk is quantified, it is used to evaluate the Carrying Capacity indicator of the recreational coastal water. This indicator is defined as the number of swimmers that can be sustained by coastal water with an acceptable risk threshold. The results indicate that the Carrying Capacity increases by dilution processes and by reduction of the source concentration. This indicator may be viewed as a screening tool for policy-makers and other stakeholders. For instance, it can help to balance the resources needed to improve the sewage-system and the benefits coming from tourism and sustainable environmental policies, given that the beach quality, in turn, depends on the improvements in the sewage system.</p>


Author(s):  
Ho Minh Dung ◽  
◽  
Vu Hoang Ngoc Khue

Air pollution in major cities of developing countries is a matter of great concern for managers, scientists, and people. In recent years, many studies have been done to simulate and forecast air quality for big cities in Vietnam as well as in the world with many air quality models have been used. However, studies using air quality models to evaluate the capacity of receiving air emission load in the atmospheric environment in local scale have not been carried out, especially in Vietnam. Therefore, the objective of this study is to assess load-carrying capacity in the atmospheric environment on a local scale for a smaller city at Mekong Delta, with a case study of Can Tho city, Vietnam. The FVM-TAPOM model system was established for the study area with the smallest grid resolution of 2km x 2km. The study results show that the atmospheric environment in Can Tho city still can receive more air emissions according to two seasons of the year (dry and rainy seasons) which are different depending on the seasonal wind direction. The central districts of Can Tho city (Ninh Kieu, Cai Rang, Binh Thuy, O Mon, and Thot Not) can only receive a smaller amount of emissions compared to the others (Vinh Thanh, Co Do, Thoi Lai, and Phong Dien). The amount of air emissions that can be received at the central districts is as follows: CO from 82,000 to 172,000 tons/year/district (696 – 2,142 tons/year/km2); SO2 from 3,800 to 4,900 tons/year/district (31 – 56 tons/year/km2); NOx from 217 to 328 tons/year/district (1.8 – 3.4 tons/year/km2). Similarly, the remaining districts can be received the emission is 164,000 – 653,000 tons of CO/year/district (1,308 – 2,555 tons/year/km2); 5,500 – 7,300 tons of SO2/year/district (17 – 29 tons/year/km2) and 31,000 – 44,000 tons of NOx/year/district (77 – 147 tons/year/km2).


2020 ◽  
Vol 10 (6) ◽  
pp. 1998
Author(s):  
Zhaoqi Wu ◽  
Yuan Wei ◽  
Xintao Wang ◽  
Chao Huang ◽  
Shao-Fei Jiang

Circular steel tube members with the absence of anticorrosive protection or coating failure are prone to uniform corrosion, which threatens the reliability and safety of members in the atmospheric environment. To fully study the mechanical behavior of uniformly corroded circular steel tubes, compression test and theoretical analysis were conducted, and two methods considering section reduction and material degradation, respectively, were adopted for the calculation of ultimate load carrying capacities of specimens. The results indicate that uniform corrosion did not change the failure modes of specimens, and all of them belonged to global buckling failure. The load carrying capacities and stiffness of specimens decreased with the increase of corrosion ratio, and the degree of reduction was greater than that of material degradation, showing a linear relationship with the corrosion rate. Under the same corrosion ratio, the specimens with larger eccentricity represented more obvious load carrying capacity and stiffness degradation. The load carrying capacities predicted by both methods were in good agreement with the test results and had a certain safety margin. The conservative degree of calculation results from three specifications followed a descending order of ANSI/AISC 360-16, GB 50017-2017, and EN 1993-1-1. Under the same corrosion ratio, the load carrying capacity variation of specimens between one-sided corrosion and two-sided corrosion was less than 3%.


2012 ◽  
Vol 21 (1) ◽  
pp. 15-21
Author(s):  
Merete Bakke ◽  
Allan Bardow ◽  
Eigild Møller

Severe drooling is associated with discomfort and psychosocial problems and may constitute a health risk. A variety of different surgical and non-surgical treatments have been used to diminish drooling, some of them with little or uncertain effect and others more effective but irreversible or with side effects. Based on clinical evidence, injection with botulinum toxin (BTX) into the parotid and submandibular glands is a useful treatment option, because it is local, reversible, and with few side effects, although it has to be repeated. The mechanism of BTX is a local inhibition of acetylcholine release, which diminishes receptor-coupled secretion and results in a flow rate reduction of 25–50% for 2–7 months.


Sign in / Sign up

Export Citation Format

Share Document