scholarly journals Shooting of giant reed (Arundo donax L.) stem cuttings in cold greenhouse

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Piergiorgio Gherbin ◽  
Simone Milan ◽  
Giuseppe Mercurio ◽  
Antonio Scopa

The increasing interest in<em> Arundo donax,</em> a perennial lignocellulosic species only reproducing by propagation, requires the setup of cheap, simple and reliable techniques. Considering these targets, stem cutting offers considerable advantages. The present investigation aimed to compare: i) plants obtained by different propagation methods (by rhizome and micropropagation mother plants); ii) plants obtained by stem cuttings from basal, central and apical parts of the stem; iii) different planting periods (spring, summer, autumn). The obtained results showed that the number of new shoots from stem buds was: i) higher in the spring and lower in the summer planting period; ii) higher from cuttings obtained by micropropagated than rhizome mother plants, both in spring and summer plantings; iii) decreasing passing from the basal to the apical stem portion; iv) partly unexpressed in the autumn planting period; v) lower from one-year stem cuttings as compared to two-year stem cuttings.

2019 ◽  
Vol 128 ◽  
pp. 534-544 ◽  
Author(s):  
Valeria Cavallaro ◽  
Danilo Scordia ◽  
Salvatore Luciano Cosentino ◽  
Venera Copani

Author(s):  
G. Antal

Giant reed (Arundo donax L.) is a perennial, herbaceous grass, it has been spread all over the world from continent to tropical conditions by human activities. In continental climate, especially Hungary, it has been considered as ornamental species, due to its decorative appearance, striped variants’ colour of leaves, long growing season and low maintenance requirements. It does not produced viable seeds, so it can be propagated vegetative ways by rhizomes or stem cuttings and by in vitro biotechnology methods. Because of its growth habits and good adaptation capability, it has been considered invasive weed primarily in coastal regions in warmer climate areas. In the previous century, giant reed produced for paper/cellulose/viscose production, woodwind musical instruments, stakes for plants or fishing rods etc. Over the last few decades, it has been produced for bioenergy purposes (bioethanol, biogas, direct combustion) or utilize as chemical basic compounds or construction materials. It has been considered a dedicated promising biomass crops thanks to high biomass production, high energy balance of cultivation and adaptability of different kind of soils and conditions. The objective of the present paper is to overview the most significance literature data on giant reed production and utilization, compare to own experimental data and economic calculations and to determine some critical factors, advantages and disadvantages of giant reed production compare to other biomass species.


2021 ◽  
Vol 154 ◽  
pp. 106258
Author(s):  
Federico Dragoni ◽  
Iride Volpi ◽  
Aung Kyaw Lwin ◽  
Federico Triana ◽  
Cristiano Tozzini ◽  
...  

2016 ◽  
Vol 84 ◽  
pp. 176-188 ◽  
Author(s):  
Luigi Pari ◽  
Maria Dolores Curt ◽  
Javier Sánchez ◽  
Enrico Santangelo

2018 ◽  
pp. 31-39 ◽  
Author(s):  
Ida Di Mola ◽  
Gianpiero Guida ◽  
Carmela Mistretta ◽  
Pasquale Giorio ◽  
Rossella Albrizio ◽  
...  

The soil salinity increase in the Mediterranean basin is one of the consequences of the climate change. The aim of this study was to evaluate the adaptability of giant reed (Arundo donax L.) to salinity, in conditions of higher temperatures, in order to hypothesise the future use of giant reed under these conditions. The trial was carried out in pots under a permanent metal structure, open on the sides and with a clear PE on the top. Four levels of soil salinity in the range 3.3-15.5 dS m–1 were imposed. The stem number of the most stressed treatment was about 45% lower than the control and also the stem height was lower than in all other treatments. The green and yellow leaf number decreased as the soil salinity increased, and their sum was significantly lower in the two most stressed treatments. Osmotic potential of the leaf sap was not affected by salinity. Leaf water potential and stomatal conduc- conductance in the saline treatments were lower than in the control. tance Assimilation rate showed similar pattern of stomatal conductance. Intrinsic WUE remained almost stable until July and increased during August under the most stressful conditions. PSII photochemistry was not affected by soil salinity. Biomass yield was not different from the control until to soil ECe 12.0 dS m–1: only the most stressed treatment (15.5 dS m–1) caused yield losses (50%). Tolerance threshold to salinity was 11.2 dS m–1 and the relative yield losses were 11.6% per dS m–1.


2014 ◽  
Vol 69 ◽  
pp. 21-27 ◽  
Author(s):  
Valeria Cavallaro ◽  
Cristina Patanè ◽  
Salvatore L. Cosentino ◽  
Isabella Di Silvestro ◽  
Venera Copani

2013 ◽  
Vol 51 ◽  
pp. 117-119 ◽  
Author(s):  
Maurizio Borin ◽  
Antonio C. Barbera ◽  
Mirco Milani ◽  
Giovanni Molari ◽  
Santo M. Zimbone ◽  
...  

2013 ◽  
Vol 8 (4) ◽  
pp. 29 ◽  
Author(s):  
Nunzio Fiorentino ◽  
Massimo Fagnano ◽  
Paola Adamo ◽  
Adriana Impagliazzo ◽  
Mauro Mori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document