scholarly journals Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3

2016 ◽  
Vol 19 ◽  
pp. 41-49 ◽  
Author(s):  
Yanjun Tian ◽  
Yixiao Fan ◽  
Jianjun Liu ◽  
Xiangying Zhao ◽  
Wei Chen
2019 ◽  
Vol 48 (2) ◽  
pp. 996-1009 ◽  
Author(s):  
Yaokang Wu ◽  
Taichi Chen ◽  
Yanfeng Liu ◽  
Rongzhen Tian ◽  
Xueqin Lv ◽  
...  

Abstract Dynamic regulation is an effective strategy for fine-tuning metabolic pathways in order to maximize target product synthesis. However, achieving dynamic and autonomous up- and down-regulation of the metabolic modules of interest simultaneously, still remains a great challenge. In this work, we created an autonomous dual-control (ADC) system, by combining CRISPRi-based NOT gates with novel biosensors of a key metabolite in the pathway of interest. By sensing the levels of the intermediate glucosamine-6-phosphate (GlcN6P) and self-adjusting the expression levels of the target genes accordingly with the GlcN6P biosensor and ADC system enabled feedback circuits, the metabolic flux towards the production of the high value nutraceutical N-acetylglucosamine (GlcNAc) could be balanced and optimized in Bacillus subtilis. As a result, the GlcNAc titer in a 15-l fed-batch bioreactor increased from 59.9 g/l to 97.1 g/l with acetoin production and 81.7 g/l to 131.6 g/l without acetoin production, indicating the robustness and stability of the synthetic circuits in a large bioreactor system. Remarkably, this self-regulatory methodology does not require any external level of control such as the use of inducer molecules or switching fermentation/environmental conditions. Moreover, the proposed programmable genetic circuits may be expanded to engineer other microbial cells and metabolic pathways.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Mohammad H. A. Ibrahim ◽  
Brady F. Cress ◽  
Robert J. Linhardt ◽  
Mattheos A. G. Koffas ◽  
Richard A. Gross

We report here the 4.092-Mb high-quality draft genome assembly of a newly isolated poly-γ-glutamic acid–producing strain,Bacillus subtilisIa1a. The genome sequence is considered a critical tool to facilitate the engineering of improved production strains. Exopolysaccharides and many industrially important enzymes can be produced by this new strain utilizing different carbon sources.


Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3777-3791 ◽  
Author(s):  
Boris Görke ◽  
Elodie Foulquier ◽  
Anne Galinier

The HPr-like protein Crh has so far been detected only in the bacillus group of bacteria. In Bacillus subtilis, its gene is part of an operon composed of six ORFs, three of which exhibit strong similarity to genes of unknown function present in many bacteria. The promoter of the operon was determined and found to be constitutively active. A deletion analysis revealed that gene yvcK, encoded by this operon, is essential for growth on Krebs cycle intermediates and on carbon sources metabolized via the pentose phosphate pathway. In addition, cells lacking YvcK acquired media-dependent filamentous or L-shape-like aberrant morphologies. The presence of high magnesium concentrations restored normal growth and cell morphology. Furthermore, suppressor mutants cured from these growth defects appeared spontaneously with a high frequency. Such suppressing mutations were identified in a transposon mutagenesis screen and found to reside in seven different loci. Two of them mapped in genes of central carbon metabolism, including zwf, which encodes glucose-6-phosphate dehydrogenase and cggR, the product of which regulates the synthesis of glyceraldehyde-3-phosphate dehydrogenase. All these results suggest that YvcK has an important role in carbon metabolism, probably in gluconeogenesis required for the synthesis of cell wall precursor molecules. Interestingly, the Escherichia coli homologous protein, YbhK, can substitute for YvcK in B. subtilis, suggesting that the two proteins have been functionally conserved in these different bacteria.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Yunrong Chai ◽  
Pascale B. Beauregard ◽  
Hera Vlamakis ◽  
Richard Losick ◽  
Roberto Kolter

ABSTRACTGalactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. InBacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since thegalEmutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to agalEnull mutant in the presence of galactose, we identified mutations insinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role inB. subtilisbiofilm formation and that the expressions of both thegalandepsgenes are interrelated. Finally, we propose thatB. subtilisand other members of theBacillusgenus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources.IMPORTANCEBacteria switch from unicellular to multicellular states by producing extracellular matrices that contain exopolysaccharides. In such aggregates, known as biofilms, bacteria are more resistant to antibiotics. This makes biofilms a serious problem in clinical settings. The resilience of biofilms makes them very useful in industrial settings. Thus, understanding the production of biofilm matrices is an important problem in microbiology. In studying the synthesis of the biofilm matrix ofBacillus subtilis, we provide further understanding of a long-standing microbiological observation that certain mutants defective in the utilization of galactose became sensitive to it. In this work, we show that the toxicity observed before was because cells were grown under conditions that were not propitious to produce the exopolysaccharide component of the matrix. When cells are grown under conditions that favor matrix production, the toxicity of galactose is relieved. This allowed us to demonstrate that galactose metabolism is essential for the synthesis of the extracellular matrix.


2015 ◽  
Vol 50 (11) ◽  
pp. 1730-1734 ◽  
Author(s):  
Jian-Ying Dai ◽  
Ling Cheng ◽  
Qing-Feng He ◽  
Zhi-Long Xiu

2018 ◽  
Vol 44 (2) ◽  
pp. 285-292
Author(s):  
Sereen Gul ◽  
Mujeeb Ur Rahman ◽  
Mohammad Ajmal ◽  
Abdul Kabir Khan Achakzai ◽  
Asim Iqbal

The effects of various carbon and nitrogen sources were evaluated on production of proteases by Bacillus subtilis IC-5. Both type and concentration of carbon and nitrogen sources influenced the production of proteases. Among the carbon sources glucose was found to be the most effective. It gave maximum production at 2% w/v concentration i.e., 1875 and 950 U/ml, alkaline and neutral protease, respectively. The response of Bacillus subtilis IC-5 towards synthesis and excretion of enzymes varied with the type of nitrogen sources. The addition of organic nitrogen sources to basal medium repressed the synthesis of proteases while the addition of inorganic nitrogen source such as sodium nitrate was found to be the best stimulating for alkaline and neutral protease synthesis. Sodium nitrate enhanced the production up to 62.40 and 10.52% of alkaline and neutral protease, respectively against w.r.t. control.


1984 ◽  
Vol 30 (4) ◽  
pp. 423-429 ◽  
Author(s):  
Dongxu Sun ◽  
I. Takahashi

By transformation analysis, a mutation (crsE1), which makes Bacillus subtilis cells able to sporulate in the presence of relatively high concentrations of glucose and other carbon sources, was mapped in the rpoBC operon. The effect of crsE1 mutation can be suppressed by another mutation in the same operon, rfm11, which confers resistance to rifamycin. Mutants carrying stv or std mutations, which are also located in the rpoBC operon, showed partial resistance to catabolites in sporulation. It appears therefore that a change in the structure or synthesis of RNA polymerase may alter the response of cells to the inhibitory effect of catabolites on sporulation.


1982 ◽  
Vol 28 (11) ◽  
pp. 1242-1251 ◽  
Author(s):  
Dongxu Sun ◽  
I. Takahashi

Using mutants of Bacillus subtilis that are able to sporulate in the presence of relatively high concentrations of various carbon sources, catabolite resistance mutations were mapped by PBS1 transduction and transformation. Catabolite resistance mutations were localized at six different loci on the chromosome of B. subtilis. The map positions of our mutants suggest that they are distinct from sacUh, catA, and scoC reported by other investigators. Relations between our findings and initiation of sporulation have been discussed.


1979 ◽  
Vol 25 (11) ◽  
pp. 1283-1287 ◽  
Author(s):  
I. Takahashi

Mutants of Bacillus subtilis that are able to sporulate under the condition of catabolite repression were isolated by a simple selection technique. The mutants used in the present study were able to grow normally on minimal medium with ammonium sulphate as the nitrogen source and glucose as the carbon source. Studies carried out with these mutants show that there is no close relation between catabolite repression of an inducible enzyme, acetoin dehydrogenase, and that of sporulation. Certain mutants are able to sporulate in the presence of all the carbon sources tested but some mutants are resistant only to the carbon source used in isolation. It is suggested that several metabolic steps may be affected in catabolite repression of sporulation.


Sign in / Sign up

Export Citation Format

Share Document