scholarly journals YvcK of Bacillus subtilis is required for a normal cell shape and for growth on Krebs cycle intermediates and substrates of the pentose phosphate pathway

Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3777-3791 ◽  
Author(s):  
Boris Görke ◽  
Elodie Foulquier ◽  
Anne Galinier

The HPr-like protein Crh has so far been detected only in the bacillus group of bacteria. In Bacillus subtilis, its gene is part of an operon composed of six ORFs, three of which exhibit strong similarity to genes of unknown function present in many bacteria. The promoter of the operon was determined and found to be constitutively active. A deletion analysis revealed that gene yvcK, encoded by this operon, is essential for growth on Krebs cycle intermediates and on carbon sources metabolized via the pentose phosphate pathway. In addition, cells lacking YvcK acquired media-dependent filamentous or L-shape-like aberrant morphologies. The presence of high magnesium concentrations restored normal growth and cell morphology. Furthermore, suppressor mutants cured from these growth defects appeared spontaneously with a high frequency. Such suppressing mutations were identified in a transposon mutagenesis screen and found to reside in seven different loci. Two of them mapped in genes of central carbon metabolism, including zwf, which encodes glucose-6-phosphate dehydrogenase and cggR, the product of which regulates the synthesis of glyceraldehyde-3-phosphate dehydrogenase. All these results suggest that YvcK has an important role in carbon metabolism, probably in gluconeogenesis required for the synthesis of cell wall precursor molecules. Interestingly, the Escherichia coli homologous protein, YbhK, can substitute for YvcK in B. subtilis, suggesting that the two proteins have been functionally conserved in these different bacteria.

2020 ◽  
Vol 8 (10) ◽  
pp. 1499
Author(s):  
Minhye Shin ◽  
Soo Rin Kim

Glucose repression has been extensively studied in Saccharomyces cerevisiae, including the regulatory systems responsible for efficient catabolism of glucose, the preferred carbon source. However, how these regulatory systems would alter central metabolism if new foreign pathways are introduced is unknown, and the regulatory networks between glycolysis and the pentose phosphate pathway, the two major pathways in central carbon metabolism, have not been systematically investigated. Here we disrupted gcr2, a key transcriptional regulator, in S. cerevisiae strain SR7 engineered to heterologously express the xylose-assimilating pathway, activating genes involved in glycolysis, and evaluated the global metabolic changes. gcr2 deletion reduced cellular growth in glucose but significantly increased growth when xylose was the sole carbon source. Global metabolite profiling revealed differential regulation of yeast metabolism in SR7-gcr2Δ, especially carbohydrate and nucleotide metabolism, depending on the carbon source. In glucose, the SR7-gcr2Δ mutant showed overall decreased abundance of metabolites, such as pyruvate and sedoheptulose-7-phosphate, associated with central carbon metabolism including glycolysis and the pentose phosphate pathway. However, SR7-gcr2Δ showed an increase in metabolites abundance (ribulose-5-phosphate, sedoheptulose-7-phosphate, and erythrose-4-phosphate) notably from the pentose phosphate pathway, as well as alteration in global metabolism when compared to SR7. These results provide insights into how the regulatory system GCR2 coordinates the transcription of glycolytic genes and associated metabolic pathways.


2006 ◽  
Vol 73 (2) ◽  
pp. 499-507 ◽  
Author(s):  
Oliver Schilling ◽  
Oliver Frick ◽  
Christina Herzberg ◽  
Armin Ehrenreich ◽  
Elmar Heinzle ◽  
...  

ABSTRACT The soil bacterium Bacillus subtilis can use sugars or organic acids as sources of carbon and energy. These nutrients are metabolized by glycolysis, the pentose phosphate pathway, and the Krebs citric acid cycle. While the response of B. subtilis to the availability of sugars is well understood, much less is known about the changes in metabolism if organic acids feeding into the Krebs cycle are provided. If B. subtilis is supplied with succinate and glutamate in addition to glucose, the cells readjust their metabolism as determined by transcriptome and metabolic flux analyses. The portion of glucose-6-phosphate that feeds into the pentose phosphate pathway is significantly increased in the presence of organic acids. Similarly, important changes were detected at the level of pyruvate and acetyl coenzyme A (acetyl-CoA). In the presence of organic acids, oxaloacetate formation is strongly reduced, whereas the formation of lactate is significantly increased. The alsSD operon required for acetoin formation is strongly induced in the presence of organic acids; however, no acetoin formation was observed. The recently discovered phosphorylation of acetolactate decarboxylase may provide an additional level of control of metabolism. In the presence of organic acids, both types of analyses suggest that acetyl-CoA was catabolized to acetate rather than used for feeding the Krebs cycle. Our results suggest that future work has to concentrate on the posttranslational mechanisms of metabolic regulation.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Laure Dumont ◽  
Mark B. Richardson ◽  
Phillip van der Peet ◽  
Danushka S. Marapana ◽  
Tony Triglia ◽  
...  

ABSTRACT Members of the haloacid dehalogenase (HAD) family of metabolite phosphatases play an important role in regulating multiple pathways in Plasmodium falciparum central carbon metabolism. We show that the P. falciparum HAD protein, phosphoglycolate phosphatase (PGP), regulates glycolysis and pentose pathway flux in asexual blood stages via detoxifying the damaged metabolite 4-phosphoerythronate (4-PE). Disruption of the P. falciparum pgp gene caused accumulation of two previously uncharacterized metabolites, 2-phospholactate and 4-PE. 4-PE is a putative side product of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, and its accumulation inhibits the pentose phosphate pathway enzyme, 6-phosphogluconate dehydrogenase (6-PGD). Inhibition of 6-PGD by 4-PE leads to an unexpected feedback response that includes increased flux into the pentose phosphate pathway as a result of partial inhibition of upper glycolysis, with concomitant increased sensitivity to antimalarials that target pathways downstream of glycolysis. These results highlight the role of metabolite detoxification in regulating central carbon metabolism and drug sensitivity of the malaria parasite. IMPORTANCE The malaria parasite has a voracious appetite, requiring large amounts of glucose and nutrients for its rapid growth and proliferation inside human red blood cells. The host cell is resource rich, but this is a double-edged sword; nutrient excess can lead to undesirable metabolic reactions and harmful by-products. Here, we demonstrate that the parasite possesses a metabolite repair enzyme (PGP) that suppresses harmful metabolic by-products (via substrate dephosphorylation) and allows the parasite to maintain central carbon metabolism. Loss of PGP leads to the accumulation of two damaged metabolites and causes a domino effect of metabolic dysregulation. Accumulation of one damaged metabolite inhibits an essential enzyme in the pentose phosphate pathway, leading to substrate accumulation and secondary inhibition of glycolysis. This work highlights how the parasite coordinates metabolic flux by eliminating harmful metabolic by-products to ensure rapid proliferation in its resource-rich niche.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Justin P. Hawkins ◽  
Patricia A. Ordonez ◽  
Ivan J. Oresnik

ABSTRACTSinorhizobium melilotiis a Gram-negative alphaproteobacterium that can enter into a symbiotic relationship withMedicago sativaandMedicago truncatula. Previous work determined that a mutation in thetkt2gene, which encodes a putative transketolase, could prevent medium acidification associated with a mutant strain unable to metabolize galactose. Since the pentose phosphate pathway inS. melilotiis not well studied, strains carrying mutations in eithertkt2andtal, which encodes a putative transaldolase, were characterized. Carbon metabolism phenotypes revealed that both mutants were impaired in growth on erythritol and ribose. This phenotype was more pronounced for thetkt2mutant strain, which also displayed auxotrophy for aromatic amino acids. Changes in pentose phosphate pathway metabolite concentrations were also consistent with a mutation in eithertkt2ortal. The concentrations of metabolites in central carbon metabolism were also found to shift dramatically in strains carrying atkt2mutation. While the concentrations of proteins involved in central carbon metabolism did not change significantly under any conditions, the levels of those associated with iron acquisition increased in the wild-type strain with erythritol induction. These proteins were not detected in either mutant, resulting in less observable rhizobactin production in thetkt2mutant. While both mutants were impaired in succinoglycan synthesis, only thetkt2mutant strain was unable to establish symbiosis with alfalfa. These results suggest thattkt2andtalplay central roles in regulating the carbon flow necessary for carbon metabolism and the establishment of symbiosis.IMPORTANCESinorhizobium melilotiis a model organism for the study of plant-microbe interactions and metabolism, especially because it effects nitrogen fixation. The ability to derive the energy necessary for nitrogen fixation is dependent on an organism's ability to metabolize carbon efficiently. The pentose phosphate pathway is central in the interconversion of hexoses and pentoses. This study characterizes the key enzymes of the nonoxidative branch of the pentose phosphate pathway by using defined genetic mutations and shows the effects the mutations have on the metabolite profile and on physiological processes such as the biosynthesis of exopolysaccharide, as well as the ability to regulate iron acquisition.


1991 ◽  
Vol 46 (3-4) ◽  
pp. 223-227 ◽  
Author(s):  
Maria Luisa Peleato ◽  
Teresa Muiño-Blanco ◽  
José Alvaro Cebrian Pérez ◽  
Manuel José López-Pérez

Specific enzyme activities of the non-oxidative pentose phosphate pathway in Aspergillus oryzae mycelia grown on different carbon sources were determined. Mycelia grown on glucose, mannitol and ribose show the highest specific activities, ribose 5-phosphate isomerase being specially very enhanced. Moreover, transketolase, transaldolase, ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase were determined in different developmental stages of mycelia grown on glucose, mannitol and ribose. The non-oxidative pentose phosphate pathway is more active during conidiogenesis, except for ribulose 5-phosphate 3-epimerase, suggesting a fundamental role of this pathway during that stage to supply pentoses for nucleic acids biosynthesis. A general decrease of the enzyme activities was found in sporulated mycelia. Arabinose 5-phosphate was tested as metabolite of the pentose pathway. This pentose phosphate was not converted into hexose phosphates or triose phosphates and inhibits significantly the ribose 5-phosphate utilization, being therefore unappropriate to support the Aspergillus oryzae growth.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Arief Izzairy Zamani ◽  
Susann Barig ◽  
Sarah Ibrahim ◽  
Hirzun Mohd. Yusof ◽  
Julia Ibrahim ◽  
...  

Abstract Background Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources. Results Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC–MS/MS-TripleQ and GC–MS, while untargeted metabolite profiling was performed using LC–MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures. Conclusions Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.


2014 ◽  
Vol 82 (7) ◽  
pp. 2746-2755 ◽  
Author(s):  
E. A. Waligora ◽  
C. R. Fisher ◽  
N. J. Hanovice ◽  
A. Rodou ◽  
E. E. Wyckoff ◽  
...  

ABSTRACTShigella flexneri, which replicates in the cytoplasm of intestinal epithelial cells, can use the Embden-Meyerhof-Parnas, Entner-Doudoroff, or pentose phosphate pathway for glycolytic carbon metabolism. To determine which of these pathways is used by intracellularS. flexneri, mutants were constructed and tested in a plaque assay for the ability to invade, replicate intracellularly, and spread to adjacent epithelial cells. Mutants blocked in the Embden-Meyerhof-Parnas pathway (pfkABandpykAFmutants) invaded the cells but formed very small plaques. Loss of the Entner-Doudoroff pathway geneedaresulted in small plaques, but the doubleeda eddmutant formed normal-size plaques. This suggested that the plaque defect of theedamutant was due to buildup of the toxic intermediate 2-keto-3-deoxy-6-phosphogluconic acid rather than a specific requirement for this pathway. Loss of the pentose phosphate pathway had no effect on plaque formation, indicating that it is not critical for intracellularS. flexneri. Supplementation of the epithelial cell culture medium with pyruvate allowed the glycolysis mutants to form larger plaques than those observed with unsupplemented medium, consistent with data from phenotypic microarrays (Biolog) indicating that pyruvate metabolism was not disrupted in these mutants. Interestingly, the wild-typeS. flexnerialso formed larger plaques in the presence of supplemental pyruvate or glucose, with pyruvate yielding the largest plaques. Analysis of the metabolites in the cultured cells showed increased intracellular levels of the added compound. Pyruvate increased the growth rate ofS. flexneriin vitro, suggesting that it may be a preferred carbon source inside host cells.


1983 ◽  
Vol 61 (3) ◽  
pp. 667-670 ◽  
Author(s):  
E. P. Fuerst ◽  
M. K. Upadhyaya ◽  
G. M. Simpson ◽  
J. M. Naylor ◽  
S. W. Adkins

The hypothesis that loss of seed dormancy is associated with an increased activity of the pentose phosphate pathway (PPP) relative to glycolysis and the Krebs cycle was tested. The PPP activity was monitored by measuring the C6/C1 ratio in embryos excised from incubated caryopses of two genetically pure nondormant (ND) lines and in three dormant (D) lines of Avena fatua L., the wild oat. The C6/C1 ratios of all lines were similar at the commencement of incubation. In the two ND lines the ratio increased steadily prior to and during emergence of the radicle. In the three D lines the ratio increased during the first 24 h and then remained almost constant; there was no germination. When gibberellin treatment was used to overcome dormancy in the D lines, the C6/C1 ratio increased during the first 24 h in two of the lines and continued to increase parallel to germination in a manner similar to normal germination in ND lines. In the third D line, despite loss of dormancy from gibberellin treatment, the ratio did not increase after 24 h. Loss of dormancy during dry storage of seeds of a D-type pure line was accompanied by an increase in the C6/C1 ratio, as measured in freshly imbibed seeds. This indicates a decreased activity of the PPP relative to glycolysis and the Krebs cycle. These findings are contrary to Roberts's hypothesis that loss of dormancy in wild oats is associated with a relative decrease in the C6/C1 ratio.


2014 ◽  
Vol 80 (17) ◽  
pp. 5292-5303 ◽  
Author(s):  
Suresh Sudarsan ◽  
Sarah Dethlefsen ◽  
Lars M. Blank ◽  
Martin Siemann-Herzberg ◽  
Andreas Schmid

ABSTRACTWhat defines central carbon metabolism? The classic textbook scheme of central metabolism includes the Embden-Meyerhof-Parnas (EMP) pathway of glycolysis, the pentose phosphate pathway, and the citric acid cycle. The prevalence of this definition of central metabolism is, however, equivocal without experimental validation. We address this issue using a general experimental approach that combines the monitoring of transcriptional and metabolic flux changes between steady states on alternative carbon sources. This approach is investigated by using the model bacteriumPseudomonas putidawith glucose, fructose, and benzoate as carbon sources. The catabolic reactions involved in the initial uptake and metabolism of these substrates are expected to show a correlated change in gene expressions and metabolic fluxes. However, there was no correlation for the reactions linking the 12 biomass precursor molecules, indicating a regulation mechanism other than mRNA synthesis for central metabolism. This result substantiates evidence for a (re)definition of central carbon metabolism including all reactions that are bound to tight regulation and transcriptional invariance. Contrary to expectations, the canonical Entner-Doudoroff and EMP pathwayssensu strictoare not a part of central carbon metabolism inP. putida, as they are not regulated differently from the aromatic degradation pathway. The regulatory analyses presented here provide leads on a qualitative basis to address the use of alternative carbon sources by deregulation and overexpression at the transcriptional level, while rate improvements in central carbon metabolism require careful adjustment of metabolite concentrations, as regulation resides to a large extent in posttranslational and/or metabolic regulation.


Sign in / Sign up

Export Citation Format

Share Document