Further evidence of affected females with a heterozygous variant in FGF13 causing X-linked developmental and epileptic encephalopathy 90

2022 ◽  
Vol 65 (1) ◽  
pp. 104403
Author(s):  
Dhanya Lakshmi Narayanan ◽  
Purvi Majethia ◽  
Aroor Shrikiran ◽  
Shahyan Siddiqui ◽  
Ashwin Dalal ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Robin N. Stringer ◽  
Bohumila Jurkovicova-Tarabova ◽  
Ivana A. Souza ◽  
Judy Ibrahim ◽  
Tomas Vacik ◽  
...  

AbstractDevelopmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies that are characterized by seizures and developmental delay. DEEs are primarily attributed to genetic causes and an increasing number of cases have been correlated with variants in ion channel genes. In this study, we report a child with an early severe DEE. Whole exome sequencing showed a de novo heterozygous variant (c.4873–4881 duplication) in the SCN8A gene and an inherited heterozygous variant (c.952G > A) in the CACNA1H gene encoding for Nav1.6 voltage-gated sodium and Cav3.2 voltage-gated calcium channels, respectively. In vitro functional analysis of human Nav1.6 and Cav3.2 channel variants revealed mild but significant alterations of their gating properties that were in general consistent with a gain- and loss-of-channel function, respectively. Although additional studies will be required to confirm the actual pathogenic involvement of SCN8A and CACNA1H, these findings add to the notion that rare ion channel variants may contribute to the etiology of DEEs.


2020 ◽  
Vol 10 (1) ◽  
pp. 88-92
Author(s):  
T. V. Markova ◽  
A. O. Borovikov ◽  
E. R. Lozier ◽  
A. A. Isaev ◽  
V. S. Kaimonov ◽  
...  

Early epileptic encephalopathy-66 was first diagnosed in a male patient from Russia using whole-exome sequencing. Early epileptic encephalopathy- 66 is a unique disorder in the group of early epileptic encephalopathies. The same recurrent heterozygous variant of the nucleotide sequence was found in all known patients, but the severity of seizures and dysmorphic signs significantly vary between patients. The current study of a recurrent pathogenic variant in PACS2 gene expands the phenotype spectrum of early epileptic encephalopathy-66 and will improve the management of patients with that disorder in Russia in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xianyu Liu ◽  
Qiyang Shen ◽  
Guo Zheng ◽  
Hu Guo ◽  
Xiaopeng Lu ◽  
...  

Objective: The genetic aetiology of epileptic encephalopathy (EE) is growing rapidly based on next generation sequencing (NGS) results. In this single-centre study, we aimed to investigate a cohort of Chinese children with early infantile epileptic encephalopathy (EIEE).Methods: NGS was performed on 50 children with unexplained EIEE. The clinical profiles of children with pathogenic variants were characterised and analysed in detail. Conservation analysis and homology modelling were performed to predict the impact of STXBP1 variant on the protein structure.Results: Pathogenic variants were identified in 17 (34%) of 50 children. Sixteen variants including STXBP1 (n = 2), CDKL5 (n = 2), PAFAH1B1, SCN1A (n = 9), SCN2A, and KCNQ2 were de novo, and one (PIGN) was a compound heterozygous variant. The phenotypes of the identified genes were broadened. PIGN phenotypic spectrum may include EIEE. The STXBP1 variants were predicted to affect protein stability.Significance: NGS is a useful diagnostic tool for EIEE and contributes to expanding the EIEE-associated genotypes. Early diagnosis may lead to precise therapeutic interventions and can improve the developmental outcome.


2016 ◽  
Vol 47 (S 01) ◽  
Author(s):  
Ch. Thiels ◽  
S. Hoffjan ◽  
C. Köhler ◽  
M. Wolff ◽  
T. Lücke

2019 ◽  
Author(s):  
Dilbar Mammadova ◽  
Cornelia Kraus ◽  
Thomas Leis ◽  
Regina Trollmann

Author(s):  
Divya Nagabushana ◽  
Aparajita Chatterjee ◽  
Raghavendra Kenchaiah ◽  
Ajay Asranna ◽  
Gautham Arunachal ◽  
...  

Abstract Introduction IQSEC2-related encephalopathy is an X-linked childhood neurodevelopmental disorder with intellectual disability, epilepsy, and autism. This disorder is caused by a mutation in the IQSEC2 gene, the product of which plays an important role in the development of the central nervous system. Case Report We describe the symptomatology, clinical course, and management of a 17-month-old male child with a novel IQSEC2 mutation. He presented with an atypical Rett syndrome phenotype with developmental delay, autistic features, midline stereotypies, microcephaly, hypotonia and epilepsy with multiple seizure types including late-onset infantile spasms. Spasms were followed by worsening of behavior and cognition, and regression of acquired milestones. Treatment with steroids led to control of spasms and improved attention, behavior and recovery of lost motor milestone. In the past 10 months following steroid therapy, child lags in development, remains autistic with no further seizure recurrence. Conclusion IQSEC2-related encephalopathy may present with atypical Rett phenotype and childhood spasms. In resource-limited settings, steroids may be considered for spasm remission in IQSEC2-related epileptic encephalopathy.


Sign in / Sign up

Export Citation Format

Share Document