Glycyrrhizic acid suppresses osteoclast differentiation and postmenopausal osteoporosis by modulating the NF-κB, ERK, and JNK signaling pathways

2019 ◽  
Vol 859 ◽  
pp. 172550 ◽  
Author(s):  
Ziqing Yin ◽  
Wei Zhu ◽  
Qi Wu ◽  
Qiang Zhang ◽  
Shuangfei Guo ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1779
Author(s):  
Ga-Ram Kim ◽  
Eun-Nam Kim ◽  
Kyoung Jin Park ◽  
Ki Hyun Kim ◽  
Gil-Saeng Jeong

Osteoblasts and osteoclasts play a pivotal role in maintaining bone homeostasis, of which excessive bone resorption by osteoclasts can cause osteoporosis and various bone diseases. However, current osteoporosis treatments have many side effects, and research on new treatments that can replace these treatments is ongoing. Therefore, in this study, the roles of ligustroside (LGS) and oleoside dimethylester (ODE), a natural product-derived compound isolated from Syringa oblata subsp. dilatata as a novel, natural product-derived osteoporosis treatments were investigated. In the results of this study, LGS and ODE inhibited the differentiation of receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced RAW264.7 cells into osteoclasts without cytotoxicity, and down-regulated the activity of TRAP, a specific biomarker of osteoclasts. In addition, it inhibited bone resorption and actin ring formation, which are important functions and features of osteoclasts. Also, the effects of LGS and ODE on the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and phosphoinositide 3-kinases (PI3K)/ protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) signaling pathways that play important roles in osteoclast differentiation were evaluated. In the results, LGS and ODE downregulated the phosphorylation of RANKL-induced MAPK and PI3K/Akt/mTOR proteins in a concentration-dependent manner, translocation of NF-κB into the nucleus was inhibited. As a result, the compounds LGS and ODE isolated from S. oblate subsp. dilatata effectively regulated the differentiation of RANKL-induced osteoclasts and inhibited the phosphorylation of signaling pathways that play a pivotal role in osteoclast differentiation. Therefore, these results suggest the possibility of LGS and ODE as new natural product treatments for bone diseases caused by excessive osteoclasts.


2015 ◽  
Vol 1627 ◽  
pp. 233-242 ◽  
Author(s):  
Yujeong Lee ◽  
Hye Jeong Chun ◽  
Kyung Moon Lee ◽  
Young-Suk Jung ◽  
Jaewon Lee

RSC Advances ◽  
2017 ◽  
Vol 7 (56) ◽  
pp. 35290-35296 ◽  
Author(s):  
Zhengfang Lin ◽  
Yinghua Li ◽  
Min Guo ◽  
Misi Xiao ◽  
Changbing Wang ◽  
...  

Zanamivir is an effective drug for influenza virus infection, but strong molecular polarity and aqueous solubility limit its clinical application.


2020 ◽  
Vol 11 (9) ◽  
pp. 8297-8308
Author(s):  
Yuanyuan Li ◽  
Jialin Xu ◽  
Dongli Li ◽  
Hang Ma ◽  
Yu Mu ◽  
...  

GUB, a main phenolic compound present in guava fruits, could alleviate APAP-induced liver injury in vitro and in vivo by activating the Nrf2 signaling pathway and inhibiting the JNK signaling pathway.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1193 ◽  
Author(s):  
Liang Chen ◽  
Chun Hu ◽  
Molly Hood ◽  
Xue Zhang ◽  
Lu Zhang ◽  
...  

Novel coronaviruses (CoV) have emerged periodically around the world in recent years. The recurrent spreading of CoVs imposes an ongoing threat to global health and the economy. Since no specific therapy for these CoVs is available, any beneficial approach (including nutritional and dietary approach) is worth investigation. Based on recent advances in nutrients and phytonutrients research, a novel combination of vitamin C, curcumin and glycyrrhizic acid (VCG Plus) was developed that has potential against CoV infection. System biology tools were applied to explore the potential of VCG Plus in modulating targets and pathways relevant to immune and inflammation responses. Gene target acquisition, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment were conducted consecutively along with network analysis. The results show that VCG Plus can act on 88 hub targets which are closely connected and associated with immune and inflammatory responses. Specifically, VCG Plus has the potential to regulate innate immune response by acting on NOD-like and Toll-like signaling pathways to promote interferons production, activate and balance T-cells, and regulate the inflammatory response by inhibiting PI3K/AKT, NF-κB and MAPK signaling pathways. All these biological processes and pathways have been well documented in CoV infections studies. Therefore, our findings suggest that VCG Plus may be helpful in regulating immune response to combat CoV infections and inhibit excessive inflammatory responses to prevent the onset of cytokine storm. However, further in vitro and in vivo experiments are warranted to validate the current findings with system biology tools. Our current approach provides a new strategy in predicting formulation rationale when developing new dietary supplements.


Sign in / Sign up

Export Citation Format

Share Document