Enzymes at solid surfaces: Nature of the interfaces and physico-chemical processes

2008 ◽  
Vol 54 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Samuel Caillou ◽  
Patrick A. Gerin ◽  
Cristèle J. Nonckreman ◽  
Sandrine Fleith ◽  
Christine C. Dupont-Gillain ◽  
...  
1989 ◽  
Vol 54 (1) ◽  
pp. 117-135
Author(s):  
Oldřich Pytela ◽  
Vítězslav Zima

The method of conjugate deviations based on the regression analysis has been suggested for construction of a new nucleophilicity scale. This method has been applied to a set of 28 nucleophiles participating in 47 physical and chemical processes described in literature. The two-parameter nucleophilicity scale obtained represents-in the parameter denoted as ND-the general tendency to form a bond to an electrophile predominantly on the basis of the orbital interaction and-in the parameter denoted as PD-the ability to interact with a centre similar to the proton (basicity). The linear correlation equation involving the ND, PD parameters and the charge appears to be distinctly better than the most significant relations used. The correlation dependences have the physico-chemical meaning. From the position of individual nucleophiles in the space of the ND and PD parameters, some general conclusions have been derived about the factors governing the reactivity of nucleophiles.


1992 ◽  
Vol 267 ◽  
Author(s):  
Pagona Maravelaki ◽  
G. Biscontin ◽  
E. Zendri ◽  
R. Polloni ◽  
W. Cecchetti

ABSTRACTCleaning treatments necessary for stone conservation consist of removing compounds that were superimposed on the original material by means of physico-chemical processes.,The purpose of this work is to identify the transformation of stone surface by the LASER treatment. Cleaning test on Istria stone with LASER radiation at different energies and in different regimes have been performed. The depletion of the original material has been evaluated by means of SEM microprobe analyses.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3132
Author(s):  
Paweł Wityk ◽  
Dorota Kostrzewa-Nowak ◽  
Beata Krawczyk ◽  
Michał Michalik ◽  
Robert Nowak

Radiation and photodynamic therapies are used for cancer treatment by targeting DNA. However, efficiency is limited due to physico-chemical processes and the insensitivity of native nucleobases to damage. Thus, incorporation of radio- and photosensitizers into these therapies should increase both efficacy and the yield of DNA damage. To date, studies of sensitization processes have been performed on simple model systems, e.g., buffered solutions of dsDNA or sensitizers alone. To fully understand the sensitization processes and to be able to develop new efficient sensitizers in the future, well established model systems are necessary. In the cell environment, DNA tightly interacts with proteins and incorporating this interaction is necessary to fully understand the DNA sensitization process. In this work, we used dsDNA/protein complexes labeled with photo- and radiosensitizers and investigated degradation pathways using LC-MS and HPLC after X-ray or UV radiation.


2021 ◽  
Vol 17 ◽  
Author(s):  
Grigoriy Sereda ◽  
Md Tusar Uddin ◽  
Jacob Wente

Background: The unique ability of carbon to form a wide variety of allotrope modifications has ushered a new era in the material science. Tuning the properties of these materials by functionalization is a must-have tool for their design customized for a specific practical use. The exponentially growing computational power available to researchers allows for the prediction and thorough understanding of the underlying physico-chemical processes responsible for the practical properties of pristine and modified carbons using the methods of quantum chemistry. Method: This review focuses on the computational assessment of the influence of functionalization on the properties of carbons and enabling desired practical properties of the new materials. The first section of each part of this review focuses on graphene - nearly planar units built from sp2-carbons. The second section discusses patterns of sp2-carbons rolled-up into curved 3D-structures in a variety of ways (fullerenes). The overview of other types of carbonaceous materials including those with a high abundance of sp3-carbons, including nanodiamonds, can be found in the third section of each manuscript’s part. Conclusion: The computational methods are especially critical for predicting electronic properties of materials such as the band gap, conductivity, optical and photoelectronic properties, solubility, adsorptivity, potential for catalysis, sensing, imaging and biomedical applications. We expect that introduction of defects to carbonaceous materials as a type of their functionalization will be a point of growth in this area of computational research.


2017 ◽  
Vol 89 (10) ◽  
pp. 974-1028 ◽  
Author(s):  
Bin Hua ◽  
Huixin Xiong ◽  
Mohammed Kadhom ◽  
Lei Wang ◽  
Guocheng Zhu ◽  
...  

2021 ◽  
Author(s):  
Marc Domingo ◽  
Jordi Faraudo

The possibility of contamination of human skin by infectious virions plays an important role in indirect transmission of respiratory viruses but little is known about the fundamental physico-chemical aspects of the virus-skin interactions. In the case of coronaviruses, the interaction with surfaces (including the skin surface) is mediated by their large glycoprotein spikes that protrude from (and cover) the viral envelope. Here, we perform all atomic simulations between the SARS-CoV-2 spike glycoprotein and human skin models. We consider an "oily" skin covered by sebum and a "clean" skin exposing the stratum corneum. The simulations show that the spike tries to maximize the contacts with stratum corneum lipids, particularly ceramides, with substantial hydrogen bonding. In the case of "oily" skin, the spike is able to retain its structure, orientation and hydration over sebum with little interaction with sebum components. Comparison of these results with our previous simulations of the interaction of SARS-CoV-2 spike with hydrophilic and hydrophobic solid surfaces, suggests that the"soft" or "hard" nature of the surface plays an essential role in the interaction of the spike protein with materials.


Sign in / Sign up

Export Citation Format

Share Document