stone conservation
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 2)

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 459
Author(s):  
Carlos Alves ◽  
Carlos A. M. Figueiredo ◽  
Jorge Sanjurjo-Sánchez ◽  
Ana C. Hernández

The present work reviews studies with information on the effects of water by itself on stones of the built environment both to assess the impact of this substance and to discuss possible implications for conservation. The analysis concerns empirical results from previous publications dealing with the effects, on several rock types, of freeze–thaw, wetting, erosion by running water and substances resulting from the water–stone interaction. Laboratory studies have shown that water freezing can cause physical damage even in low porosity rocks. As far as we know, this is the first review that considers comparative laboratory studies of freeze–thaw and salt crystallization on the same rock specimens, and these point to lower erosive effects than salt weathering, as freeze–thaw can provoke catastrophic cracking. Wetting has shown strong damaging effects on some fine-grained clastic rocks. Erosive features have been reported for rain exposition and for some fountain settings albeit, in these field studies, it could be difficult to assess the contribution of pollutants transported by water (this assessment could have meaningful implications for stone conservation, especially in fountain settings). Water also interacts with stone constituents, namely sulfides and soluble salts, releasing substances that could impact those stones. Sulfides are a relatively frequent issue for slates and granites, and our observations suggest that for this last rock type, this issue is mostly associated with the presence of enclaves and, hence, avoiding the surface exposition of such enclaves could solve the problem.


2021 ◽  
Vol 11 (18) ◽  
pp. 8787
Author(s):  
Fernando Bolivar-Galiano ◽  
Oana Adriana Cuzman ◽  
Clara Abad-Ruiz ◽  
Pedro Sánchez-Castillo

All fountains are inhabited by phototrophic microorganisms, especially if they are functional and located outdoors. This fact, along with the regular presence of water and the intrinsic bioreceptivity of stone material, easily favors the biological development. Many of these organisms are responsible for the biodeterioration phenomena and recognizing them could help to define the best strategies for the conservation and maintenance of monumental fountains. The presence of biological growth involves different activities for the conservation of artistic fountains. This paper is a review of the phototrophic biodiversity reported in 46 fountains and gives a whole vision on coping with biodeteriogens of fountains, being an elementary guide for professionals in the field of stone conservation. It is focused on recognizing the main phototrophs by using simplified dichotomous keys for cyanobacteria, green algae and diatoms. Some basic issues related to the handling of the samples and with the control of these types of microalgae are also briefly described, in order to assist interested professionals when dealing with the biodiversity of monumental fountains.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 824
Author(s):  
Zita Pápay ◽  
Nikoletta Rozgonyi-Boissinot ◽  
Ákos Török

The durability of consolidated highly porous limestones was tested after salt and freeze–thaw cycles. Three porous limestone lithotypes that were commonly used in construction in the Central-European region during previous centuries were selected for the tests. Specimens of Miocene limestone were consolidated with four different types of ethyl silica-based consolidants (KSE 100, KSE 300, KSE 300 E, KSE 300 HV). After consolidation, the samples were exposed to freeze thaw cycles and salt crystallization tests. Water saturation under atmospherically pressure, capillary water absorption and splitting tensile strength were measured on treated and untreated samples to assess change attributed to consolidation in the open porosity and mechanical parameters. The increase in the tensile strength of the medium-grained samples was higher than that of the consolidated fine-grained lithotypes. The effect of consolidation treatment was very different in terms of pore-size distribution as obtained by Mercury intrusion porosimetry (MIP). Untreated and consolidated samples were subjected to 10 cycles of sodium sulphate crystallization (EN 12370) and 10 freeze–thaw cycles (EN 12371) tests. Experiments concluded that in addition to the initial strength increase after the conservation, the modified pore structure is the crucial factor to evaluate the long-term efficiency of stone conservation.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1010
Author(s):  
Cristian Petcu ◽  
Elvira Alexandrescu ◽  
Adriana Bălan ◽  
Maria Antonia Tănase ◽  
Ludmila Otilia Cinteză

This study presents the facile sol-gel synthesis of nanostructured coatings for use in water-repellent treatment of travertine stone. The synthesized materials combine surface roughness characteristics with particular chemical compositions to give different hydrophobicity results. The influence of the silica particle coating precursor on the hydrophobicity of the polymeric film was investigated, and the octyl-modified silane was selected for further fabrication of the hybrid coatings. The water repellent properties, together with composition and structural properties of the silane-based hybrid material were measured on model glass surface. The coating with the best characteristics was subsequently deposited onto the travertine stone. The potential applicability of the nanostructured material was evaluated considering both the properties of the coating film and those of the travertine stone subjected to the treatment. The surface texture of the film, water repellent properties and uniformity were determined using scanning electron microscopy, atomic force microscopy, dynamic light scattering and contact angle measurements. The coating’s potential for use in stone conservation was evaluated by assessing its impact on the stone’s visual aspect. All the results obtained from the different types of analyses showed that the octyl-modified silica nanostructured material was highly hydrophobic and compatible both with the travertine stone and with the requirements for use on cultural heritage monuments.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 729 ◽  
Author(s):  
Marco Roveri ◽  
Sara Goidanich ◽  
Lucia Toniolo

During the last ten years, photocatalytic nanocomposites combining titania nanoparticles with silicon-based matrices have received increasing attention in the stone conservation research field, because they offer an effective multifunctional approach to the issue of stone protection. However, much work still has to be done in studying the behaviour of these nanocomposites in real environmental conditions and understanding to what extent they are able to retain their effectiveness and compatibility once applied on outdoor surfaces. The latter is a key information that should lie at the basis of any successful conservation and maintenance campaign. The present study provides insight into this relevant topic trough laboratory testing by assessing the artificial ageing of two silane-based photocatalytic nanocomposites, previously selected through an accurate testing on different natural stones. Three accelerated ageing procedures, based on artificial solar irradiation, heating and rain wash-out, allowed simulating about two years of outdoor exposure to some of the weathering factors to which stones are normally subjected. The results provided quite accurate information about the long-term behaviour of the products and on the role that the stone properties play therein. It was shown that, when the products are able to penetrate deeply enough inside the stone pores, they retain much of their hydrophobising and photocatalytic properties and maintain a good compatibility with the stone substrates, even after partial chemical degradation of the alkyl-silica matrices has occurred on the very stone surface.


2020 ◽  
Vol 155 ◽  
pp. 104766
Author(s):  
L. Ruggiero ◽  
A. Sodo ◽  
M. Cestelli-Guidi ◽  
M. Romani ◽  
A. Sarra ◽  
...  
Keyword(s):  

2020 ◽  
Vol 65 (sup1) ◽  
pp. P225-P232 ◽  
Author(s):  
Martin Michette ◽  
Heather Viles ◽  
Constantina Vlachou-Mogire ◽  
Ian Angus

2020 ◽  
Vol 12 (3) ◽  
pp. 1132 ◽  
Author(s):  
Giulia Caneva ◽  
Maria Rosaria Fidanza ◽  
Chiara Tonon ◽  
Sergio Enrico Favero-Longo

The colonisation of stone by different organisms often leaves biodeterioration patterns (BPs) on the surfaces even if their presence is no longer detectable. Peculiar weathering patterns on monuments and rocks, such as pitting phenomena, were recognised as a source of information on past colonisers and environmental conditions. The evident inhibition areas for new bio-patinas observed on the marble blocks of the Caestia Pyramid in Rome, recognisable as tracks of previous colonisations, seem a source for developing new natural products suitable for restoration activities. To hypothesise past occurring communities and species, which gave rise to such BPs, we carried out both in situ observations and analyses of the rich historical available iconography (mainly photographs). Moreover, we analysed literature on the lichen species colonising carbonate stones used in Roman sites. Considering morphology, biochemical properties and historical data on 90 lichen species already reported in Latium archaeological sites, we suppose lichen species belonging to the genus Circinaria (Aspicilia s.l.) to be the main aetiological agent of such peculiar BPs. These results seem relevant to highlight the long-lasting allelopathic properties of some lichen substances potentially applicable as a natural product to control colonisation, improving the environmental and economical sustainability of stone restoration.


Sign in / Sign up

Export Citation Format

Share Document