High-capacity V-/Sc-/Ti-doped MnO2 for Li/MnO2 batteries and structural changes at different discharge depths

2014 ◽  
Vol 127 ◽  
pp. 115-122 ◽  
Author(s):  
Jian Zeng ◽  
Shengping Wang ◽  
Qiuling Liu ◽  
Xinrong Lei
Author(s):  
Jacob N. Adams ◽  
Logan J. Ausderau ◽  
George J. Nelson

Tin (Sn) alloy electrodes show great potential for advancing battery performance due to the high capacity of tin. To realize this potential, the volumetric expansion during the lithiation process must be mitigated. One means of mitigating volumetric expansion of tin is to alloy it with copper to create Cu6Sn5. Such alloy electrodes retain some of the high capacity of tin, while attempting to accommodate volumetric changes with the addition of the malleable copper. Lithiation and delithiation tests were conducted with the Cu6Sn5 pellet electrodes to produce microstructural changes at the electrode surface. To observe and quantify these microstructural changes, x-ray microtomography was performed on electrode samples after electrochemical testing. The microtomography data was reconstructed into a 3D image, segmented, and the continuous phase size distribution (PSD) of each electrode sample was analyzed. The electrodes lithiated to 0 V vs Li/Li+ and then delithiated to 0.2 V vs. Li/Li+ showed the most substantial reduction in overall PSD compared to the other samples. This suggests that full lithiation of the Sn present in the alloy electrodes followed by partial delithiation of the Li4.4Sn to Li2CuSn can cause substantial microstructural changes related to volume expansion on lithiation and structural collapse upon delithiation. The electrodes fully lithiated to 0 V vs Li/Li+ and not delithiated show a higher overall phase size distribution, including all solid phases, than the pristine sample and the electrode samples that were partially lithiated to 0.2 V vs. Li/Li+ and delithiated to 1.5 V vs. Li/Li+. The higher overall phase size distribution that is shown by the sample that was fully lithiated and not delithiated is evidence of the significant volumetric expansion of the Cu6Sn5 compound due to lithiation. During this process of volumetric expansion, the phase size distribution of the Cu6Sn5/Sn phase is shown to decrease. When the volumetric expansion of the lithiated electrode samples and the volumetric contraction of the delithiated electrode sample are considered together, it can be inferred that the microstructural changes that are observed, such as the decrease in phase size distribution of the Cu6Sn5/Sn phase, can be attributed to the volumetric expansion and contraction of the compound during the lithiation and delithiation process.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 552 ◽  
Author(s):  
Tomás Naranjo

The tribe Triticeae contains about 500 diploid and polyploid taxa, among which are important crops, such as wheat, barley and rye. The phylogenetic relationships, genome compo-sition and chromosomal architecture, were already reported in the pioneer genetic studies on these species, given their implications in breeding-related programs. Hexaploid wheat, driven by its high capacity to develop cytogenetic stocks, has always been at the forefront of these studies. Cytogenetic stocks have been widely used in the identification of homoeologous relationships between the chromosomes of wheat and related species, which has provided valuable information on genome evolution with implications in the transfer of useful agronomical traits into crops. Meiotic recombination is non-randomly distributed in the Triticeae species, and crossovers are formed in the distal half of the chromosomes. Also of interest for crops improvement is the possibility of being able to modulate the intraspecific and interspecific recombination landscape to increase its frequency in crossover-poor regions. Structural changes may help in this task. In fact, chromosome truncation increases the recombination frequency in the adjacent intercalary region. However, structural changes also have a negative effect upon recombination. Gross chromosome rearrangements produced in the evolution usually suppress meiotic recombination between non-syntenic homoeologs. Thus, the chromosome structural organization of related genomes is of great interest in designing strategies of the introgression of useful genes into crops.


Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
W. Kunath ◽  
E. Zeitler ◽  
M. Kessel

The features of digital recording of a continuous series (movie) of singleelectron TV frames are reported. The technique is used to investigate structural changes in negatively stained glutamine synthetase molecules (GS) during electron irradiation and, as an ultimate goal, to look for the molecules' “undamaged” structure, say, after a 1 e/Å2 dose.The TV frame of fig. la shows an image of 5 glutamine synthetase molecules exposed to 1/150 e/Å2. Every single electron is recorded as a unit signal in a 256 ×256 field. The extremely low exposure of a single TV frame as dictated by the single-electron recording device including the electron microscope requires accumulation of 150 TV frames into one frame (fig. lb) thus achieving a reasonable compromise between the conflicting aspects of exposure time per frame of 3 sec. vs. object drift of less than 1 Å, and exposure per frame of 1 e/Å2 vs. rate of structural damage.


Author(s):  
K. Kovacs ◽  
E. Horvath ◽  
J. M. Bilbao ◽  
F. A. Laszlo ◽  
I. Domokos

Electrolytic lesions of the pituitary stalk in rats interrupt adenohypophysial blood flow and result in massive infarction of the anterior lobe. In order to obtain a deeper insight into the morphogenesis of tissue injury and to reveal the sequence of events, a fine structural investigation was undertaken on adenohypophyses of rats at various intervals following destruction of the pituitary stalk.The pituitary stalk was destroyed electrolytically, with a Horsley-Clarke apparatus on 27 male rats of the R-Amsterdam strain, weighing 180-200 g. Thirty minutes, 1,2,4,6 and 24 hours after surgery the animals were perfused with a glutaraldehyde-formalin solution. The skulls were then opened and the pituitary glands removed. The anterior lobes were fixed in glutaraldehyde-formalin solution, postfixed in osmium tetroxide and embedded in Durcupan. Ultrathin sections were stained with uranyl acetate and lead citrate and investigated with a Philips 300 electron microscope.


Author(s):  
P.L. Moore ◽  
P.L. Sannes ◽  
H.L. Bank ◽  
S.S. Spicer

It is thought that calcium and/or magnesium may play important roles in polymorphonuclear (PMN) leukocyte functions such as chemotaxis, adhesion and phagocytosis. Yet, a clear understanding of the biological roles of these ions has awaited the development of techniques which permit a selective alteration of intracellular ion concentrations. Recently, treatment of cells with the ionophore A23187 has been used to alter intracellular divalent cation concentrations. This ionophore is a lipid soluble antibiotic produced by Streptomyces chartreusensis that complexes with both calcium and magnesium (3) and is believed to carry these ions across biological membranes (4). Biochemical investigations of human PMN leukocytes demonstrate that cells treated with A23187 and extracellular calcium release their lysosomal enzymes into the extracellular medium without rupturing and releasing their soluble cytoplasmic enzymes (5,6). The aim of the present study and and a companion report (7) was to investigate the structural changes that occur in leukocytes during ionophore-induced lysosomal enzyme release.


Author(s):  
Werner J. Niklowitz

After intoxication of rabbits with certain substances such as convulsant agents (3-acetylpyridine), centrally acting drugs (reserpine), or toxic metal compounds (tetraethyl lead) a significant observation by phase microscope is the loss of contrast of the hippocampal mossy fiber layer. It has been suggested that this alteration, as well as changes seen with the electron microscope in the hippocampal mossy fiber boutons, may be related to a loss of neurotransmitters. The purpose of these experiments was to apply the OsO4-zinc-iodide staining technique to the study of these structural changes since it has been suggested that OsO4-zinc-iodide stain reacts with neurotransmitters (acetylcholine, catecholamines).Domestic New Zealand rabbits (2.5 to 3 kg) were used. Hippocampal tissue was removed from normal and experimental animals treated with 3-acetylpyridine (antimetabolite of nicotinamide), reserpine (anti- hypertensive/tranquilizer), or iproniazid (antidepressant/monamine oxidase inhibitor). After fixation in glutaraldehyde hippocampal tissue was treated with OsO4-zinc-iodide stain and further processed for phase and electron microscope studies.


Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


Author(s):  
N. Uyeda ◽  
E. J. Kirkland ◽  
B. M. Siegel

The direct observation of structural change by high resolution electron microscopy will be essential for the better understanding of the damage process and its mechanism. However, this approach still involves some difficulty in quantitative interpretation mostly being due to the quality of obtained images. Electron diffraction, using crystalline specimens, has been the method most frequently applied to obtain a comparison of radiation sensitivity of various materials on the quantitative base. If a series of single crystal patterns are obtained the fading rate of reflections during the damage process give good comparative measures. The electron diffraction patterns also render useful information concerning the structural changes in the crystal. In the present work, the radiation damage of potassium tetracyano-platinate was dealt with on the basis two dimensional observation of fading rates of diffraction spots. KCP is known as an ionic crystal which possesses “one dimensional” electronic properties and it would be of great interest to know if radiation damage proceeds in a strongly asymmetric manner.


Sign in / Sign up

Export Citation Format

Share Document