Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors

2018 ◽  
Vol 269 ◽  
pp. 11-20 ◽  
Author(s):  
Mengmin Mo ◽  
Chuchu Chen ◽  
Han Gao ◽  
Mengwei Chen ◽  
Dagang Li
Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 867 ◽  
Author(s):  
Ting Zheng ◽  
Nuo Xu ◽  
Qi Kan ◽  
Hongbin Li ◽  
Chunrui Lu ◽  
...  

Effective multiwalled carbon nanotube (MWCNT) fiber manufacturing methods have received a substantial amount of attention due to the low cost and excellent properties of MWCNTs. Here, we fabricated hybrid microfibers composed of hyaluronic acid (HA) and multiwalled carbon nanotubes (MWCNTs) by a wet-spinning method. HA acts as a biosurfactant and an ionic crosslinker, which improves the dispersion of MWCNTs and helps MWCNT to assemble into microfibers. The effects of HA concentration, dispersion time, injection speed, and MWCNT concentration on the formation, mechanical behavior, and conductivity of the HA/MWCNT hybrid microfibers were comprehensively investigated through SEM, UV-Vis spectroscopy, tensile testing, and conductivity testing. The obtained HA/MWCNT hybrid microfibers presented excellent tensile properties in regard to Young’s modulus (9.04 ± 1.13 GPa) and tensile strength (130.25 ± 10.78 MPa), and excellent flexibility and stability due to the superior mechanical and electrical properties of MWCNTs. This work presents an effective and easy-to-handle preparation method for high-performance MWCNT hybrid microfibers assembly, and the obtained HA/MWCNT hybrid microfibers have promising applications in the fields of energy storage, sensors, micro devices, intelligent materials, and high-performance fiber-reinforced composites.


2019 ◽  
Vol 7 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Huai-Ling Gao ◽  
Ran Zhao ◽  
Chen Cui ◽  
Yin-Bo Zhu ◽  
Si-Ming Chen ◽  
...  

Abstract Bio-sourced nanocellulosic materials are promising candidates for spinning high-performance sustainable macrofibers for advanced applications. Various strategies have been pursued to gain nanocellulose-based macrofibers with improved strength. However, nearly all of them have been achieved at the expense of their elongation and toughness. Inspired by the widely existed hierarchical helical and nanocomposite structural features in biosynthesized fibers exhibiting exceptional combinations of strength and toughness, we report a design strategy to make nanocellulose-based macrofibers with similar characteristics. By combining a facile wet-spinning process with a subsequent multiple wet-twisting procedure, we successfully obtain biomimetic hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers, realizing impressive improvement in their tensile strength, elongation and toughness simultaneously. The achievement certifies the validity of the bioinspired hierarchical helical and nanocomposite structural design proposed here. This bioinspired design strategy provides a potential platform for further optimizing or creating many more strong and tough nanocomposite fiber materials for diverse applications.


Author(s):  
Igor Chilin ◽  

Приведены результаты исследований и выполнена оценка влияния технологических факторов на реологические свойства самоуплотняющихся сталефибробетонных смесей, определены кратковременные и длительные физико-механические и деформативные характеристики сверхвысокопрочного сталефибробетона, включая определение его фактической морозостойкости.


2021 ◽  
Vol 2 (3) ◽  
pp. 501-515
Author(s):  
Rajib Kumar Biswas ◽  
Farabi Bin Ahmed ◽  
Md. Ehsanul Haque ◽  
Afra Anam Provasha ◽  
Zahid Hasan ◽  
...  

Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. This study presents a comprehensive literature review of the effects of steel fiber percentages and aspect ratios on the setting time, workability, and mechanical properties of UHPFRC. It was evident that (1) an increase in steel fiber dosage and aspect ratio negatively impacted workability, owing to the interlocking between fibers; (2) compressive strength was positively influenced by the steel fiber dosage and aspect ratio; and (3) a faster loading rate significantly improved the mechanical properties. There were also some shortcomings in the measurement method for setting time. Lastly, this research highlights current issues for future research. The findings of the study are useful for practicing engineers to understand the distinctive characteristics of UHPFRC.


2020 ◽  
Vol 92 (5) ◽  
pp. 767-772
Author(s):  
Ye Zhang

AbstractThis short review summarizes our recent progress in fiber-shaped lithium-ion batteries and lithium-air batteries based on carbon nanotube hybrid fiber electrodes. The fiber architecture allows batteries to be deformable in all dimensions and bear various deformations such as bending, tying, twisting and even stretching. They are scaled up and further woven into breathable, flexible, stretchable and shape-memory textiles to effectively meet the requirements of modern electronics such as wearable products.


Sign in / Sign up

Export Citation Format

Share Document