fiber manufacturing
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 25)

H-INDEX

13
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3700
Author(s):  
Patrich Ferretti ◽  
Gian Maria Santi ◽  
Christian Leon-Cardenas ◽  
Marco Freddi ◽  
Giampiero Donnici ◽  
...  

Fused Deposition Modeling (FDM) 3D printing is the most widespread technology in additive manufacturing worldwide that thanks to its low costs, finished component applications, and the production process of other parts. The need for lighter and higher-performance components has led to an increased usage of polymeric matrix composites in many fields ranging from automotive to aerospace. The molds used to manufacture these components are made with different technologies, depending on the number of pieces to be made. Usually, they are fiberglass molds with a thin layer of gelcoat to lower the surface roughness and obtain a smooth final surface of the component. Alternatively, they are made from metal, thus making a single carbon fiber prototype very expensive due to the mold build. Making the mold using FDM technology can be a smart solution to reduce costs, but due to the layer deposition process, the roughness is quite high. The surface can be improved by reducing the layer height, but it is still not possible to reach the same degree of surface finish of metallic or gelcoat molds without the use of fillers. Thermoplastic polymers, also used in the FDM process, are generally soluble in specific solvents. This aspect can be exploited to perform chemical smoothing of the external surface of a component. The combination of FDM and chemical smoothing can be a solution to produce low-cost molds with a very good surface finish.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Yangyang Cui ◽  
Xiaoman Zhai ◽  
Baocheng Wang ◽  
Shihao Zhang ◽  
Amanzheli Yeerken ◽  
...  

AbstractThe promulgation and implementation of the national and Beijing municipal standards for air pollutants emitted from crematoriums has effectively alleviated the problem of “black smoke” in crematoriums, but noticeable odor in crematoriums remains. We determined the level of odor emissions in crematoriums by monitoring the odor concentrations of cremators, incinerators, and cremation workshops in five crematoriums in Beijing. Subsequently, we analyzed the major contributing factors to the odor level and proposed control measures. A high odor concentration in crematoriums was observed; two different mechanisms were proposed to explain this finding. First, poor ventilation conditions in workshops and inadequate airtightness of equipment resulted in dimensionless concentrations of unorganized odor emissions in the workshops ranging from 97 to 732, with an average of 504, which is much higher than the standard level of 20. Second, the postprocessing facilities used in cremation sites produce poor odor removal, which, coupled with fuel usage and unregulated operations, led to high concentrations of organized odor emissions ranging from 231 to 1303 (910 on average) for cremators and incinerators. The odor emissions of cremators and incinerators meet the Integrated Emission Standards of Air Pollutants (DB11-501-2017), which are suitable for industries containing industrial kilns but not for crematoriums. The odor emissions in crematoriums are lower than those emitted from industries, such as fiber manufacturing and activated carbon processing. However, the unique geographical locations of crematoriums, high population density, and high exposure risk to local residents necessitate strengthening the management and control of odor emissions from crematoriums. To further address the problem of odor emissions from crematoriums in Beijing, further clarification and tightening of industry standards for the concentration limits of organized and unorganized odor emissions is recommended. Crematoriums will thus be prompted to increase odor control in workshops and adopt and improve deodorization facilities, including the installation and application of treatment facilities, such as adsorption and biological control.


Energy ◽  
2021 ◽  
pp. 120113
Author(s):  
Hamid Khayyam ◽  
Minoo Naebe ◽  
Abbas S. Milani ◽  
Seyed Mousa Fakhrhoseini ◽  
Abhijit Date ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document