Passivating oxygen atoms in SiO through pre-treatment with Na2CO3 to increase its first cycle efficiency for lithium-ion batteries

2021 ◽  
pp. 139777
Author(s):  
Tian Tan ◽  
Pui-Kit Lee ◽  
Nobuyuki Zettsu ◽  
Katsuya Teshima ◽  
Denis Y.W. Yu
Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 149
Author(s):  
Alexandra Holzer ◽  
Stefan Windisch-Kern ◽  
Christoph Ponak ◽  
Harald Raupenstrauch

The bottleneck of recycling chains for spent lithium-ion batteries (LIBs) is the recovery of valuable metals from the black matter that remains after dismantling and deactivation in pre‑treatment processes, which has to be treated in a subsequent step with pyrometallurgical and/or hydrometallurgical methods. In the course of this paper, investigations in a heating microscope were conducted to determine the high-temperature behavior of the cathode materials lithium cobalt oxide (LCO—chem., LiCoO2) and lithium iron phosphate (LFP—chem., LiFePO4) from LIB with carbon addition. For the purpose of continuous process development of a novel pyrometallurgical recycling process and adaptation of this to the requirements of the LIB material, two different reactor designs were examined. When treating LCO in an Al2O3 crucible, lithium could be removed at a rate of 76% via the gas stream, which is directly and purely available for further processing. In contrast, a removal rate of lithium of up to 97% was achieved in an MgO crucible. In addition, the basic capability of the concept for the treatment of LFP was investigated whereby a phosphorus removal rate of 64% with a simultaneous lithium removal rate of 68% was observed.


RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 24132-24136
Author(s):  
Liurui Li ◽  
Tairan Yang ◽  
Zheng Li

The pre-treatment efficiency of the direct recycling strategy in recovering end-of-life Li-ion batteries is predicted with levels of control factors.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1107 ◽  
Author(s):  
Lisa Brückner ◽  
Julia Frank ◽  
Tobias Elwert

Research for the recycling of lithium-ion batteries (LIBs) started about 15 years ago. In recent years, several processes have been realized in small-scale industrial plants in Europe, which can be classified into two major process routes. The first one combines pyrometallurgy with subsequent hydrometallurgy, while the second one combines mechanical processing, often after thermal pre-treatment, with metallurgical processing. Both process routes have a series of advantages and disadvantages with respect to legislative and health, safety and environmental requirements, possible recovery rates of the components, process robustness, and economic factors. This review critically discusses the current status of development, focusing on the metallurgical processing of LIB modules and cells. Although the main metallurgical process routes are defined, some issues remain unsolved. Most process routes achieve high yields for the valuable metals cobalt, copper, and nickel. In comparison, lithium is only recovered in few processes and with a lower yield, albeit a high economic value. The recovery of the low value components graphite, manganese, and electrolyte solvents is technically feasible but economically challenging. The handling of organic and halogenic components causes technical difficulties and high costs in all process routes. Therefore, further improvements need to be achieved to close the LIB loop before high amounts of LIB scrap return.


2011 ◽  
Vol 158 (12) ◽  
pp. A1243 ◽  
Author(s):  
Kensuke Nakura ◽  
Yuta Ohsugi ◽  
Mitsuyasu Imazaki ◽  
Kingo Ariyoshi ◽  
Tsutomu Ohzuku

2014 ◽  
Vol 261 ◽  
pp. 324-331 ◽  
Author(s):  
Wenwen Zhao ◽  
Shuji Harada ◽  
Yasuyuki Furuya ◽  
Shinji Yamamoto ◽  
Hideyuki Noguchi

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Anna Vanderbruggen ◽  
Aliza Salces ◽  
Alexandra Ferreira ◽  
Martin Rudolph ◽  
Rodrigo Serna-Guerrero

The comminution of spent lithium-ion batteries (LIBs) produces a powder containing the active cell components, commonly referred to as “black mass.” Recently, froth flotation has been proposed to treat the fine fraction of black mass (<100 µm) as a method to separate anodic graphite particles from cathodic lithium metal oxides (LMOs). So far, pyrolysis has been considered as an effective treatment to remove organic binders in the black mass in preparation for flotation separation. In this work, the flotation performance of a pyrolyzed black mass obtained from an industrial recycling plant was improved by adding a pre-treatment step consisting of mechanical attrition with and without kerosene addition. The LMO recovery in the underflow product increased from 70% to 85% and the graphite recovery remained similar, around 86% recovery in the overflow product. To understand the flotation behavior, the spent black mass from pyrolyzed LIBs was compared to a model black mass, comprising fully liberated LMOs and graphite particles. In addition, ultrafine hydrophilic particles were added to the flotation feed as an entrainment tracer, showing that the LMO recovery in overflow products is a combination of entrainment and true flotation mechanisms. This study highlights that adding kerosene during attrition enhances the emulsification of kerosene, simultaneously increasing its (partial) spread on the LMOs, graphite, and residual binder, with a subsequent reduction in selectivity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Junghyun Kim ◽  
So Yeun Kim ◽  
Cheol-Min Yang ◽  
Gyo Woo Lee

Abstract Recently, some studies have utilized silicon (Si) as an anode material of lithium ion battery by recycling Si from the slurry of wafer slicing dust. The filtration of Si particles condensed from Si vapors that were exhausted from the ingot growing furnace could propose another method of Si recycling. In this study, we investigated the possibility of using such collected silicon oxides (SiOx) particles as an anode material. After collecting SiOx particles, FE-SEM, TEM, EDS, XRD, XPS analysis, and charge/discharge test were carried out to investigate characteristics and usability of these particles. FE-SEM and FE-TEM images showed that these particles mainly consisted of spherical primary particles with a diameter of 10 nm or less. Agglomerates of these primary particles were larger than 300 nm in diameter. In TEM image and EDS analysis, crystalline particles were observed along with amorphous particles. As a result of XRD analysis, amorphous silica (SiO2) and crystalline Si were observed. Charge/discharge tests were carried out to determine the feasibility of using these particles as an anode material for lithium ion batteries. A cycle efficiency of 40.6% was obtained in the test in which the total number of charge/discharge cycle was 100 under the condition of C-rate 0.2 for the first three times and C-rate 1.0 for the remaining 97 times. Results showed that these collected particles could be used as an anode material for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document