scholarly journals Size affected dislocation activity in crystals: Advanced surface and grain boundary conditions

2017 ◽  
Vol 13 ◽  
pp. 36-41 ◽  
Author(s):  
Edgar Husser ◽  
Celal Soyarslan ◽  
Swantje Bargmann
2004 ◽  
Vol 47 (11) ◽  
pp. 1161-1166
Author(s):  
E. A. Molchanova ◽  
A. I. Potekaev ◽  
V. N. Udodov

2021 ◽  
Author(s):  
John W. Ostrander ◽  
Carolyn Torres ◽  
Fride Vullum-Breuer ◽  
Dale Teeters

Abstract Solid state batteries, particularly for lithium ion based architecture have been the focus of development for over 20 years and are receiving even more attention today. Utilizing impedance spectroscopy (IS) measurements we investigate the response of conductivity versus incremental pressure increase by a piston-cylinder-type high pressure cell up to 1 GPa for some lithium conducting ceramics: LATP (Li1.3Al0.3Ti1.7(PO4)3), LLTO (Li5La3Ta2O12), LLT (Li0.33La0.55TiO3), LAGP (Li1.5Al0.5Ge1.5P3O12) and LLZO (Li7La3Zr2O12) for non-annealed and annealed samples.Isothermal, incremental pressure increase of powders allows for an in situ observation of the transition state conditions of poorly consolidated ceramic powders and the effects on grain boundary conditions prior to sintering. Specific conductance (σb) increased by several orders of magnitude in some samples, approaching 10-3 S∙cm-1, yet decreased in other samples. The affect of grain boundaries and affects of bulk capacitance as the sample dimensions are altered due to pressure, are attributed to some of this behavior and will be discussed. The understanding of some of these fundamental processes may be valuable in facilitating these and similar ceramics for use in commercial solid state battery systems.


2011 ◽  
Vol 218 (1-2) ◽  
pp. 103-113 ◽  
Author(s):  
Magnus Ekh ◽  
Swantje Bargmann ◽  
Mikkel Grymer

1994 ◽  
Vol 338 ◽  
Author(s):  
M. Scherge ◽  
C. L. Bauer ◽  
W. W. Mullins

ABSTRACTStress distribution and mass flux in the plane of each grain boundary within a polycrystalline thin-film conductor have been calculated during electromigration for zero flux divergence (steady state) and various boundary conditions. Steady state, representing a balance between the (applied) electric and (induced) stress driving forces, is assumed to develop after a short transient time. Boundary conditions at the intersection of grain boundaries with the top and bottom conductor surfaces (surface junctions) and with the conductor edges (edge junctions) are assumed to be of two types: open (flux passes freely) and closed (zero flux). Flux is assumed to pass freely at the intersection of grain boundaries with each other (triple Junctions). Several grain boundary configurations are considered, including individual boundaries, single triple junctions, and combinations thereof, assuming that bottom surface junctions (conductor/ substrate interface) are closed and that top surface junctions are either open (bare conductor) or closed (passivation layer). Results clearly show the formation of incipient holes and hillocks near the intersection of triple junctions and/or closed (blocked) edge junctions with open surface junctions.


Author(s):  
J. E. Doherty ◽  
A. F. Giamei ◽  
B. H. Kear ◽  
C. W. Steinke

Recently we have been investigating a class of nickel-base superalloys which possess substantial room temperature ductility. This improvement in ductility is directly related to improvements in grain boundary strength due to increased boundary cohesion through control of detrimental impurities and improved boundary shear strength by controlled grain boundary micros true tures.For these investigations an experimental nickel-base superalloy was doped with different levels of sulphur impurity. The micros tructure after a heat treatment of 1360°C for 2 hr, 1200°C for 16 hr consists of coherent precipitates of γ’ Ni3(Al,X) in a nickel solid solution matrix.


Sign in / Sign up

Export Citation Format

Share Document