Natural ventilation as energy efficient solution for achieving low-energy houses in Dubai

2015 ◽  
Vol 99 ◽  
pp. 284-291 ◽  
Author(s):  
Hanan M. Taleb
Author(s):  
Mahmoud A. Hassan

Low energy architect is a major target of building researchers and designers worldwide. Obviously, any portion of energy that can be saved in this respect can be directed to industrial processes, if any. Building energy consumption can be reduced through various systems such as air conditioning (a major building energy consumer), lighting, equipment, etc. In regions where energy is limited or scarce, air conditioning would have to be replaced by natural ventilation for the removal of the building heat load for thermal comfort. Also, energy conservation issues are being more important in hot arid regions, especially because the building are consuming more than 60% of electric energy generated and about 65% of this energy is consumed for cooling. There is a set of complex factors, which determine energy needs in building, such as solar radiation, type of A/C systems, building operation, thermal properties of the building envelop... etc. In the present decade the aim is to discuss the advantage of energy efficient building design. There is several ways to reduce the energy consumed for the human comfort process, but what is the most energy efficient or more energy saving from these ways. One of these is the insulation, which can be used for insulating the wall and the roof, which subjected to the large amount of the solar heat gain. The insulation of the roof is intended to maximize resident’s thermal comfort and minimize energy consumption of housing. The parameters, which are effect on the thermal performance of the roof, are the color, general construction, insulation and ventilation. This paper present the effect of insulation of the roof on the amount of energy consumed for different types of insulation in order to select the suitable insulation which give the minimum cost and maximum energy saving. This work was done using an energy software program (Visual DOE). This paper provided suggestions to improve the building construction for the thermal comfort. A parametric analysis was investigated for the economic analysis of various insulating building materials.


2009 ◽  
Vol 58 (5) ◽  
pp. 2137-2149 ◽  
Author(s):  
Y. Amara ◽  
L. Vido ◽  
M. Gabsi ◽  
E. Hoang ◽  
A. Hamid Ben Ahmed ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Davide Bottone ◽  
Valentina Donadei ◽  
Henna Niemelä ◽  
Heli Koivuluoto ◽  
Stefan Seeger

AbstractPassive icephobic surfaces can provide a cost and energy efficient solution to many icing problems that are currently handled with expensive active strategies. Water-repellent surface treatments are promising candidates for this goal, but commonly studied systems, such as superhydrophobic surfaces and Slippery Liquid Infused Porous Surfaces (SLIPS), still face challenges in the stability and durability of their properties in icing environments. In this work, environmental icing conditions are simulated using an Icing Wind Tunnel, and ice adhesion is evaluated with a Centrifugal Adhesion Test. We show that superhydrophobic coral-like Silicone Nanofilament (SNF) coatings exhibit extremely low ice adhesion, to the point of spontaneous ice detachment, and good durability against successive icing cycles. Moreover, SNFs-based SLIPS show stably low ice adhesion for the whole duration of the icing test. Stability of surface properties in a cold environment is further investigated with water wettability at sub-zero surface temperature, highlighting the effect of surface chemistry on superhydrophobicity under icing conditions.


Author(s):  
Nurul Akmam Naamandadin ◽  
◽  
Norrazman Zaiha Zainol ◽  
Siti Nur Aishah Mohd Noor ◽  
Abdul Razak Sapian ◽  
...  

2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Florin Ciubotaru ◽  
Christoph Adelmann ◽  
Sorin Cotofana ◽  
...  

Spin Waves (SWs) propagate through magnetic waveguides and interfere with each other without consuming noticeable energy, which opens the road to new ultra-low energy circuit designs. In this paper we build upon SW features and propose a novel energy efficient Full Adder (FA) design consisting of The FA 1 Majority and 2 XOR gates, which outputs Sum and Carry-out are generated by means of threshold and phase detection, respectively. We validate our proposal by means of MuMax3 micromagnetic simulations and we evaluate and compare its performance with state-of-the-art SW, 22nm CMOS, Magnetic Tunnel Junction (MTJ), Spin Hall Effect (SHE), Domain Wall Motion (DWM), and Spin-CMOS implementations. Our evaluation indicates that the proposed SW FA consumes 22.5% and 43% less energy than the direct SW gate based and 22nm CMOS counterparts, respectively. Moreover it exhibits a more than 3 orders of magnitude smaller energy consumption when compared with state-of-the-art MTJ, SHE, DWM, and Spin-CMOS based FAs, and outperforms its contenders in terms of area by requiring at least 22% less chip real-estate.


2019 ◽  
pp. 310-318
Author(s):  
Christoph Schmahl ◽  
Michael Höck ◽  
Dirk Ressin ◽  
Mathias Kesseler

SPIN ◽  
2020 ◽  
Vol 10 (04) ◽  
pp. 2030001
Author(s):  
Kuntal Roy

Spin-devices are switched by flipping spins without moving charge in space and this can lead to ultra-low-energy switching replacing traditional transistors in beyond Moore’s law era. In particular, the electric field-induced magnetization switching has emerged to be an energy-efficient paradigm. Here, we review the recent developments on ultra-low-energy, area-efficient, and fast spin-devices using multiferroic magnetoelectric composites. It is shown that both digital logic gates and analog computing with transistor-like high-gain region in the input-output characteristics of multiferroic composites are feasible. We also review the equivalent spin-circuit representation of spin-devices by considering spin potential and spin current similar to the charge-based counterparts using Kirchhoff’s voltage/current laws, which is necessary for the development of large-scale circuits. We review the spin-circuit representation of spin pumping, which happens anyway when there is a material adjacent to a rotating magnetization and therefore it is particularly necessary to be incorporated in device modeling. Such representation is also useful for understanding and proposing experiments. In spin-circuit representation, spin diffusion length is an important parameter and it is shown that a thickness-dependent spin diffusion length reflecting Elliott–Yafet spin relaxation mechanism in platinum is necessary to match the experimental results.


Sign in / Sign up

Export Citation Format

Share Document