Experimental investigations on the use of capillary tube and thermostatic expansion valve in storage-enhanced heat recovery room air-conditioner

2015 ◽  
Vol 101 ◽  
pp. 76-83 ◽  
Author(s):  
Jie Jia ◽  
W.L. Lee
2011 ◽  
Vol 15 (suppl. 2) ◽  
pp. 327-339 ◽  
Author(s):  
Chennuchetty Chinnaraj ◽  
Palanisamy Govindarajan ◽  
Raghavan Vijayan

The objective of this study is to investigate the influence of Electronic Expansion Valve (EEV) on the performance of window air conditioner retrofitted with R407C and R290. The window air conditioner applying the EEV is tested by varying the compressor inlet superheat from 0?C to 20?C. The eco friendly refrigerant R407C has the similar thermodynamic properties as those of R22 with an exception of temperature gliding during the phase change at constant pressure. R290 is a hydrocarbon which also exhibits properties very close to R22 which enables this to be used as a potential alternative to R22.The EEV affords a precise, fast, and stable flow control for a wide range of flow rate due to its use of an electronic control method based on an advanced control algorithm.EEV controls the refrigerant flow through the evaporator by means monitoring pressure and temperature at the outlet of the evaporator and hence it shows good overall performances comparing the capillary tube system. The Coefficient of Performance (COP) of R290 is the maximum among the three refrigerants tested and also for all the three refrigerants, COP is low at higher degree of superheat.


2014 ◽  
Vol 960-961 ◽  
pp. 643-647
Author(s):  
Yan Sheng Xu

A stepped capillary tube consisting of two serially connected capillary tubes with different diameters is invented to replace the conventional expansion device. The mass flow rate of refrigerant R410A in stepped capillary tubes with different size were tested. The model of stepped capillary tube is proposed, and its numerical algorithm for tube length and mass flow rate is developed. The experimental results show that the performance comparing between stepped capillary tube system and capillary tube assembly system, the cooling capacity is reduced by 0.3%, the energy efficiency ratio (EER) is equal to each other, the heating capacity is increased by 0.3%, the coefficient of performance (COP) is decreased by 0.3%. That is to say, the performance index of the two kinds of throttle mechanism is almost identical. It indicates that the stepped capillary tube can replace the capillary tube assembly in the R410A heat pump type air conditioner absolutely. The model is validated with experimental data, and the results show that the model can be used for sizing and rating stepped capillary tube.


1996 ◽  
Vol 464 ◽  
Author(s):  
Mark S. Feldman ◽  
Anna L. Lin ◽  
Raoul Kopelman

AbstractWe investigate the anomalous kinetics in one dimension of a diffusion limited catalytic trapping reaction, A + T → T, by measuring the oxidation of glucose. The reaction is carried out in a thin capillary tube, and the depletion of oxygen in the vicinity of the reaction front is monitored by the fluorescence of a Ru(II) dye. Theoretical results and simulations have predicted an asymptotic t1/2 dependence for the rate coefficient. We observe a depedence on t0.56, with what appears to be an asymptotic behavior approaching t1/2.


With the aim of saving energy and to reduce global warming effect, our work focuses on the valorization of the waste heat evacuated by the condenser of a refrigeration machine (air-conditioner) for the desalination of sea water. In this paper, the conception of a new system combining airconditioning and desalination is realized. The modelling of the heat exchanges of each part of the system is realized. To improve the performance of the system, various experimental tests are represented and discussed. Comparison between simulation and experimental results shows a good agreement and present a courageous motive for the system application.


Sign in / Sign up

Export Citation Format

Share Document