scholarly journals Numerical study on heat and mass transfer characteristics of the counter-flow heat-source tower (CFHST)

2017 ◽  
Vol 145 ◽  
pp. 318-330 ◽  
Author(s):  
Jun Lu ◽  
Wuyan Li ◽  
Yongcai Li ◽  
Liyue Zeng ◽  
Lulu Yang ◽  
...  
2019 ◽  
Vol 23 (1) ◽  
pp. 281-293 ◽  
Author(s):  
Chakravarthula Raju ◽  
Naramgari Sandeep ◽  
Mohamed Ali ◽  
Abdullah Nuhait

A mathematical model has been proposed for investigating the flow, heat, and mass transfer in Williamson and Casson fluid-flow over a stretching surface. For controlling the temperature and concentration fields we considered the space and temperature dependent heat source/sink and homogeneous-heterogeneous reactions, respectively. Numerical results are carried out for this study by using Runge-Kutta based shooting technique. The effects of governing parameters on the flow, heat and mass transfer are illustrated graphically. Also computed the skin-friction coefficients for axial and transverse directions along with the local Nusselt number. In most of the studies, homogeneous-heterogeneous profiles were reduced into a single concentration equation by assuming equal diffusion coefficients. For the physical relevance, without any assumptions we studied the individual behavior of the homogeneous-heterogeneous profiles. It is found that the rate of heat and mass transfer in Casson fluid is significantly large while equated with the heat and mass transfer rate of Williamson fluid.


Author(s):  
Michael P. Sobera ◽  
Chris R. Kleijn ◽  
Paul Brasser ◽  
Harry E. A. Van den Akker

Increased permeability of clothing material can reduce the heat load caused by Nuclear-Biological-Chemical (NBC) protective clothing, but implies reduced protection. The goal of the present work is to study the influence of the air permeability on human comfort and safety. A numerical study is presented of the air flow with heat and mass transfer around a cylinder, mimicking a human limb, placed in a turbulent external air flow and surrounded by protective clothing. The problem is described in terms of the relevant dimensionless numbers. The dependence of the flow field underneath the clothing and the heat and mass transfer to the limb are studied as a function of the Reynolds, Darcy and Damko¨hler numbers, which are a measure for the wind speed, clothing permeability and adsorptivity of the poisonous gas, respectively. The air flow simulations are validated with experiments, in which the flow field around a bare cylinder and in the space between a cylinder and its porous cover, is measured with LDA. Scaling rules for heat and mass transfer are presented.


Sign in / Sign up

Export Citation Format

Share Document