Modeling energy consumption in residential buildings: A bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation

2017 ◽  
Vol 147 ◽  
pp. 47-66 ◽  
Author(s):  
Longquan Diao ◽  
Yongjun Sun ◽  
Zejun Chen ◽  
Jiayu Chen
Author(s):  
Toufic Zaraket ◽  
Bernard Yannou ◽  
Yann Leroy ◽  
Stephanie Minel ◽  
Emilie Chapotot

Building occupants are considered as a major source of uncertainty in energy modeling nowadays. Yet, industrial energy simulation tools often account for occupant behavior through some predefined scenarios and fixed consumption profiles which yield to unrealistic and inaccurate predictions. In this paper, a stochastic activity-based approach for forecasting occupant-related energy consumption in residential buildings is proposed. First, the model is exposed together with its different variables. Second, a direct application of the model on the domestic activity “washing laundry” is performed. A number of simulations are performed and their results are presented and discussed. Finally, the model is validated by confronting simulation results to real measured data.


2016 ◽  
Vol 121 ◽  
pp. 309-317 ◽  
Author(s):  
Rébha Ghedamsi ◽  
Noureddine Settou ◽  
Abderrahmane Gouareh ◽  
Adem Khamouli ◽  
Nadia Saifi ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Debby Veillette ◽  
Jean Rouleau ◽  
Louis Gosselin

Energy consumption and thermal comfort in residential buildings are highly influenced by occupant behavior, which exhibits a high level of day-to-day and dwelling-to-dwelling variance. Although occupant behavior stochastic models have been developed in the past, the analysis or selection of a building design parameter is typically based on simulations that use a single “average” occupant behavior schedule which does not account for all possible profiles. The objective of this study is to enhance the understanding of how window-to-wall ratio (WWR) of a residential unit affects heating demand and thermal comfort when considering occupant behavior diversity through a parametric analysis. To do so, a stochastic occupant behavior model generates a high number of possible profiles, which are then used as input in an energy simulation of the dwelling. As a result, one obtains probability distributions of energy consumption and comfort for different WWR values. The paper shows that the shape of the probability distributions is affected by WWR and dwelling orientation, and that the influence of different occupant behavior aspects on performance also varies with WWR. This work could help designers to better assess the impact of WWR for a large spectrum of possible occupant behavior profiles.


Author(s):  
Junaidah Jailani ◽  
◽  
Norsyalifa Mohamad ◽  
Muhammad Amirul Omar ◽  
Hauashdh Ali ◽  
...  

According to the National Energy Balance report released by the Energy Commission of Malaysia in 2016, the residential sector uses 21.6% of the total energy in Malaysia. Residents waste energy through inefficient energy consumption and a lack of awareness. Building occupants are considered the main factor that influences energy consumption in buildings, and to change energy consumption on an overall scale, it is crucial to change individual behaviour. Therefore, this study focused on analysing the energy consumption pattern and the behaviour of consumers towards energy consumption in their homes in the residential area of Batu Pahat, Johor. A self-administrated questionnaire approach was employed in this study. The findings of this study showed that the excessive use of air conditioners was a significant factor in the increasing electricity bills of homeowners as well as the inefficient use of electrical appliances. Also, this study determined the effect of awareness on consumer behaviour. This study recommends ways to help minimise energy consumption in the residential area.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4117
Author(s):  
Tadeusz Kuczyński ◽  
Anna Staszczuk ◽  
Piotr Ziembicki ◽  
Anna Paluszak

The main objective of this paper is to demonstrate the effectiveness of increasing the thermal capacity of a residential building by using traditional building materials to reduce the risk of its excessive overheating during intense heat waves in a temperate climate. An additional objective is to show that the use of this single passive measure significantly reduces the risk of overheating in daytime rooms, but also, though to a much lesser extent, in bedrooms. Increasing the thermal mass of the room from light to a medium heavy reduced the average maximum daily temperature by 2.2K during the first heat wave and by 2.6K during the other two heat waves. The use of very heavy construction further reduced the average maximum temperature for the heat waves analyzed by 1.4K, 1.2K and 1.7K, respectively, giving a total possible reduction in maximum daily temperatures in the range of 3.6 °C, 3.8 °C and 4.3 °C. A discussion of the influence of occupant behavior on the use of night ventilation and external blinds was carried out, finding a significant effect on the effectiveness of the use of both methods. The results of the study suggest that in temperate European countries, preserving residential construction methods with heavy envelopes and partitions could significantly reduce the risk of overheating in residential buildings over the next few decades, without the need for night ventilation or external blinds, whose effectiveness is highly dependent on individual occupant behavior.


Sign in / Sign up

Export Citation Format

Share Document