Experimental investigation on thermal inertia characterization of commercial buildings for demand response

2021 ◽  
Vol 252 ◽  
pp. 111384
Author(s):  
Sen Huang ◽  
Srinivas Katipamula ◽  
Robert Lutes
2021 ◽  
Vol 228 ◽  
pp. 108950
Author(s):  
Mohd Badrul Salleh ◽  
Noorfazreena M. Kamaruddin ◽  
Zulfaa Mohamed-Kassim ◽  
Elmi Abu Bakar

Author(s):  
M. A. Hassan ◽  
Manabendra Pathak ◽  
Mohd. Kaleem Khan

The temperature and concentration play an important role on rheological parameters of the gel. In this work, an experimental investigation of thermorheological properties of aqueous gel Carbopol Ultrez 20 for various concentrations and temperatures has been presented. Both controlled stress ramps and controlled stress oscillatory sweeps were performed for obtaining the rheological data to find out the effect of temperature and concentration. The hysteresis or thixotropic seemed to have negligible effect. Yield stress, consistency factor, and power law index were found to vary with temperature as well as concentration. With gel concentration, the elastic effect was found to increase whereas viscous dissipation effect was found to decrease. Further, the change in elastic properties was insignificant with temperature in higher frequency range of oscillatory stress sweeps.


2017 ◽  
Vol 32 (1) ◽  
pp. 774-783 ◽  
Author(s):  
He Hao ◽  
Charles D. Corbin ◽  
Karanjit Kalsi ◽  
Robert G. Pratt

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Dora Foti ◽  
Michela Lerna ◽  
Vitantonio Vacca

Masonry is a composite material largely used in construction. It exhibits several advantages, including significant compressive strength, thermal inertia, and aesthetic beauty. A disadvantage of masonry is mainly related to the inadequate shear strength due to the poor capacity and ductility of the adopted mortar. This aspect is crucial in seismic areas. In this paper, the behavior of polyurethane foams, used as adhesives for the construction of thin joints brick masonry walls, has been investigated. First, the characterization of components was carried out, followed by laboratory uniaxial tests on masonry walls and shear tests on triplets. Moreover, a comparison of the behavior of the foam-brick walls with respect to the traditional mortars masonry was carried out, as the type of joints varies and the arrangement of the holes of the bricks varies with respect to the direction of the applied load. Results provide indications on which adhesive has to be adopted for masonry buildings in reference to the site of construction (i.e., seismic hazard).


Author(s):  
Shunbo Lei ◽  
Johanna Mathieu ◽  
Rishee Jain

Abstract Commercial buildings generally have large thermal inertia, and thus can provide services to power grids (e.g., demand response (DR)) by modulating their Heating, Ventilation, and Air Conditioning (HVAC) systems. Shifting consumption on timescales of minutes to an hour can be accomplished through temperature setpoint adjustments that affect HVAC fan consumption. Estimating the counterfactual baseline power consumption of HVAC fans is challenging but is critical for assessing the capacity and participation of DR from HVAC fans in grid-interactive efficient buildings (GEBs). DR baseline methods have been developed for whole-building power profiles. This work evaluates those methods on total HVAC fan power profiles, which have different characteristics than whole-building power profiles. Specifically, we assess averaging methods (e.g., Y-day average, HighXofY, and MidXofY, with and without additive adjustments), which are the most commonly used in practice, and a least squares-based linear interpolation method recently developed for baselining HVAC fan power. We use empirical submetering data from HVAC fans in three University of Michigan buildings in our assessment. We find that the linear interpolation method has a low bias and by far the highest accuracy, indicating that it is potentially the most effective existing baseline method for quantifying the effects of short-term load shifting of HVAC fans. Overall, our results provide new insights on the applicability of existing DR baseline methods to baselining fan power and enable more widespread contribution of GEBs to DR and other grid services.


Sign in / Sign up

Export Citation Format

Share Document