Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks

EnergyChem ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 100016 ◽  
Author(s):  
Dong-Dong Zhou ◽  
Xue-Wen Zhang ◽  
Zong-Wen Mo ◽  
Yu-Zhi Xu ◽  
Xiao-Yun Tian ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Wanxia Zhang ◽  
Ruting Huang ◽  
Xianyang Shi ◽  
Liyan Song

Metal-organic frameworks (MOFs) are porous materials composed of metal centers and organic connectors. They are formed by complexation reactions and exhibit characteristics of both polymers and coordination compounds. They display...


2020 ◽  
Author(s):  
Alexander C. Forse ◽  
Kristen A. Colwell ◽  
Miguel I. Gonzalez ◽  
Stefan Benders ◽  
Rodolfo M. Torres-Gavosto ◽  
...  

The rapid diffusion of molecules in porous materials is critical for numerous applications including separations, energy storage, sensing, and catalysis. A common strategy for tuning guest diffusion rates is to vary the material pore size, although detailed studies that isolate the effect of changing this particular variable are lacking. Here, we begin to address this challenge by measuring the diffusion of carbon dioxide in two isoreticular metal–organic frameworks featuring channels with different diameters, Zn<sub>2</sub>(dobdc) (dobdc<sup>4–</sup> = 2,5-dioxidobenzene-1,4-dicarboxylate) and Zn<sub>2</sub>(dobpdc) (dobpdc<sup>4−</sup> = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), using pulsed field gradient NMR spectroscopy. An increase in the pore diameter from 15 Å in Zn<sub>2</sub>(dobdc) to 22 Å in Zn<sub>2</sub>(dobpdc) is accompanied by an increase in the self-diffusion of CO<sub>2</sub> by a factor of 4 to 6, depending on the gas pressure. Analysis of the diffusion anisotropy in Zn<sub>2</sub>(dobdc) reveals that the self-diffusion coefficient for motion of CO<sub>2</sub> along the framework channels is at least 10,000 times greater than for motion between the framework channels. Our findings should aid the design of improved porous materials for a range of applications where diffusion plays a critical role in determining performance.


2020 ◽  
Author(s):  
Alexander C. Forse ◽  
Kristen A. Colwell ◽  
Miguel I. Gonzalez ◽  
Stefan Benders ◽  
Rodolfo M. Torres-Gavosto ◽  
...  

The rapid diffusion of molecules in porous materials is critical for numerous applications including separations, energy storage, sensing, and catalysis. A common strategy for tuning guest diffusion rates is to vary the material pore size, although detailed studies that isolate the effect of changing this particular variable are lacking. Here, we begin to address this challenge by measuring the diffusion of carbon dioxide in two isoreticular metal–organic frameworks featuring channels with different diameters, Zn<sub>2</sub>(dobdc) (dobdc<sup>4–</sup> = 2,5-dioxidobenzene-1,4-dicarboxylate) and Zn<sub>2</sub>(dobpdc) (dobpdc<sup>4−</sup> = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), using pulsed field gradient NMR spectroscopy. An increase in the pore diameter from 15 Å in Zn<sub>2</sub>(dobdc) to 22 Å in Zn<sub>2</sub>(dobpdc) is accompanied by an increase in the self-diffusion of CO<sub>2</sub> by a factor of 4 to 6, depending on the gas pressure. Analysis of the diffusion anisotropy in Zn<sub>2</sub>(dobdc) reveals that the self-diffusion coefficient for motion of CO<sub>2</sub> along the framework channels is at least 10,000 times greater than for motion between the framework channels. Our findings should aid the design of improved porous materials for a range of applications where diffusion plays a critical role in determining performance.


2020 ◽  
Author(s):  
Alexander C. Forse ◽  
Kristen A. Colwell ◽  
Miguel I. Gonzalez ◽  
Stefan Benders ◽  
Rodolfo M. Torres-Gavosto ◽  
...  

The rapid diffusion of molecules in porous materials is critical for numerous applications including separations, energy storage, sensing, and catalysis. A common strategy for tuning guest diffusion rates is to vary the material pore size, although detailed studies that isolate the effect of changing this particular variable are lacking. Here, we begin to address this challenge by measuring the diffusion of carbon dioxide in two isoreticular metal–organic frameworks featuring channels with different diameters, Zn<sub>2</sub>(dobdc) (dobdc<sup>4–</sup> = 2,5-dioxidobenzene-1,4-dicarboxylate) and Zn<sub>2</sub>(dobpdc) (dobpdc<sup>4−</sup> = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), using pulsed field gradient NMR spectroscopy. An increase in the pore diameter from 15 Å in Zn<sub>2</sub>(dobdc) to 22 Å in Zn<sub>2</sub>(dobpdc) is accompanied by an increase in the self-diffusion of CO<sub>2</sub> by a factor of 4 to 6, depending on the gas pressure. Analysis of the diffusion anisotropy in Zn<sub>2</sub>(dobdc) reveals that the self-diffusion coefficient for motion of CO<sub>2</sub> along the framework channels is at least 10,000 times greater than for motion between the framework channels. Our findings should aid the design of improved porous materials for a range of applications where diffusion plays a critical role in determining performance.


Author(s):  
Manpreet Singh ◽  
Athulya S. Palakkal ◽  
Renjith S. Pillai ◽  
Subhadip Neogi

Metal-organic frameworks (MOFs) have surfaced as incipient class of multifaceted materials for selective carbon dioxide (CO2) adsorption and luminescent detection of assorted classes of lethal organo-aromatics, where functional group assisted...


2021 ◽  
Author(s):  
Monir Falsafi ◽  
Amir Shokooh Saljooghi ◽  
Khalil Abnous ◽  
Seyed Mohammad Taghdisi ◽  
Mohammad Ramezani ◽  
...  

Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials constructed from metal clusters or ions plus organic linkers, have been broadly employed as controlled systems of drug delivery...


2021 ◽  
Author(s):  
Yurong Shan ◽  
Dexiang Liu ◽  
Chunyan Xu ◽  
Peng Zhan ◽  
Hui Wang ◽  
...  

In this work, PMA@NH2-MIL-68(Rh) with a mangosteen spherical structure was successfully synthesized by a hydrothermal method for the photocatalytic reduction of carbon dioxide. The electronic structure and morphology of the...


2020 ◽  
Author(s):  
Siddhartha De ◽  
Thomas Devic ◽  
Alexandra Fateeva

Given the ubiquitous role of porphyrins in natural systems, these molecules and related derivatives such as phthalocyanines are fascinating building units to achieve functional porous materials. Porphyrin-based MOFs have been...


2020 ◽  
Vol 40 ◽  
pp. 156-170 ◽  
Author(s):  
Ping Shao ◽  
Luocai Yi ◽  
Shumei Chen ◽  
Tianhua Zhou ◽  
Jian Zhang

Sign in / Sign up

Export Citation Format

Share Document