Assessment of a novel coupling integrated process for coproducing syngas and hydrogen from natural gas and biomass feedstocks with in-situ CO2 utilization

2022 ◽  
Vol 254 ◽  
pp. 115241
Author(s):  
M. Piroozmand ◽  
A. Hafizi
Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 971 ◽  
Author(s):  
Zhai ◽  
Yang ◽  
Li ◽  
Jiang ◽  
Ye ◽  
...  

Soil contamination remains a global problem. Among the different kinds of remediation technologies, in situ soil thermal remediation has attracted great attention in the environmental field, representing a potential remedial alternative for contaminated soils. Soils need to be heated to a high temperature in thermal remediation, which requires a large amount of energy. For the natural gas heating system in thermal remediation, a fuzzy coordination control strategy and thermohydraulic dynamics model have been proposed in this paper. In order to demonstrate the superiority of the strategy, the other three traditional control strategies are introduced. Analysis of the temperature rise and energy consumption of soils under different control strategies were conducted. The results showed that the energy consumption of fuzzy coordination control strategy is reduced by 33.9% compared to that of the traditional control strategy I, constant natural gas flow and excess air ratio. Further, compared to the traditional control strategy II, constant excess air ratio and desired outlet temperature of wells, the strategy proposed can reduce energy consumption by 48.7%. The results illustrate the superiority of the fuzzy coordination control strategy, and the strategy can greatly reduce energy consumption, thereby reducing the cost of in situ soil thermal remediation.


1970 ◽  
Vol 10 (01) ◽  
pp. 51-55 ◽  
Author(s):  
Robert A. Albrecht ◽  
Sullivan S. Marsden

Abstract Although foam usually will flow in porous media, under certain controllable conditions it can also be used to block the flow of gas, both in unconsolidated sand packs and in sandstones. After steady gas or foam flow has been established at a certain injection pressure pi, the pressure is decreased until flow pressure pi, the pressure is decreased until flow ceases at a certain blocking pressure pb. When flow is then reestablished at a second, higher pi, blocking can again occur at another pb that will usually be greater than the first pi. The relationship between pi and Pb depends on the type of porous medium and the foamer solution saturation in the porous medium. A process is suggested whereby porous medium. A process is suggested whereby this phenomenon might be used to impede or block leakage in natural gas storage projects. Introduction The practice of storing natural gas in underground porous rocks has developed rapidly, and it now is porous rocks has developed rapidly, and it now is the major way of meeting peak demands in urban areas of the U. S. Many of these storage projects have been plagued with gas leakage problems that have, in some cases, presented safety hazards and resulted in sizeable economic losses. Usually these leaks are due to such natural factors as faults and fractures, or to such engineering factors as poor cement jobs and wells that were improperly abandoned. For the latter, various remedies such as spot cementing have been tried but not always with great success. In recent years several research groups have been studying the flow properties of aqueous foams and their application to various petroleum engineering problems. Most of this work has been done under problems. Most of this work has been done under experimental conditions such that the foam would flow in either tubes or porous media. However, under some extreme or unusual experimental conditions, flow in porous media becomes very difficult or even impossible. This factor also has suggested m us as well as to others that foam can be used as a gas flow impeder or as a sealant for leaks in gas storage reservoirs. In such a process, the natural ability of porous media to process, the natural ability of porous media to generate foam would be utilized by injecting a slug of foamer solution and following this with gas to form the foam in situ. This paper presents preliminary results of a sandy on the blockage of gas flow by foam in porous media. It also describes how this approach might be applied to a field process for sealing leaks in natural gas storage reservoirs. Throughout this report, we use the term "foam" to describe any dispersed gas-liquid system in which the liquid is the continuous phase, and the gas is the discontinuous phase. APPARATUS AND PROCEDURE A schematic drawing of the apparatus is shown in Fig. 1. At least 50 PV of filtered, deaerated foamer solution were forced through the porous medium to achieve liquid saturation greater than 80 percent. Afterwards air at controlled pressures was passed into the porous medium in order to generate foam in situ. Table 1 shows the properties and dimensions of the several porous media that were used. The beach sands were washed, graded and packed into a vibrating lucite tube containing a constant liquid level to avoid Stoke's law segregation over most of the porous medium. JPT P. 51


2018 ◽  
Vol 11 (3) ◽  
pp. 1273-1295 ◽  
Author(s):  
Natasha L. Miles ◽  
Douglas K. Martins ◽  
Scott J. Richardson ◽  
Christopher W. Rella ◽  
Caleb Arata ◽  
...  

Abstract. Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc.) measuring methane dry mole fraction (CH4), carbon dioxide dry mole fraction (CO2), and the isotopic ratio of methane (δ13CH4) were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January–December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of −0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10 min isotopic ratio differences of 0.8 ‰. In terms of source attribution, analyzer compatibility of 0.2 ‰ δ13CH4 affords the ability to distinguish a 50 ppb CH4 peak from a biogenic source (at −60 ‰, for example) from one originating from a thermogenic source (−35 ‰), with the exact value dependent upon the source isotopic ratios. Using a Keeling plot approach for the non-afternoon data at a tower in the center of the study region, we determined the source isotopic signature to be −31.2 ± 1.9 ‰, within the wide range of values consistent with a deep-layer Marcellus natural gas source.


2020 ◽  
Vol 42 ◽  
pp. 101317 ◽  
Author(s):  
Katarzyna Świrk ◽  
Jacek Grams ◽  
Monika Motak ◽  
Patrick Da Costa ◽  
Teresa Grzybek

Sign in / Sign up

Export Citation Format

Share Document